Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Showing Spotlights 1 - 8 of 92 in category Green Nanotechnology (newest first):

 

Novel water treatment technology
surfaces at Ingenuity Lab

planetConcern about the depletion of global water resources has grown rapidly in the past decade due to our increasing global population and growing demand for other diverse applications. Since only 2.5% of the Earth's water is fresh, it has been reported that almost half of the world's population is at risk of a water crisis by the year 2025. Accordingly, significant research efforts have been focused on the desalination of brackish/seawater and the remediation and reuse of wastewater to meet the agricultural, industrial, and domestic water demands.

Posted: Mar 27th, 2014

Nanotechnology water remediation with bulky graphene materials

water_dropIndividual graphene sheets and their functionalized derivatives have been used to remove metal ions and organic pollutants from water. These graphene-based nanomaterials show quite high adsorption performance as adsorbents. However they also cause additional cost because the removal of these adsorbent materials after usage is difficult and there is the risk of secondary environmental pollution unless the nanomaterials are collected completely after usage. One solution to this problem would be the assembly of individual sheets into three-dimensional (3D) macroscopic structures which would preserve the unique properties of individual graphene sheets, and offer easy collecting and recycling after water remediation.

Posted: Mar 26th, 2014

Loofah sponges as 'green' anode material for microbial fuel cells

loofahIn microbial fuell cells, the anode material as the medium of electron transfer and as the support for biofilm formation is a key component that determines the effectiveness and efficiency of power generation. Generally, the anode will perform better if the anode material has a greater specific surface area and higher affinity for living bacterial cells. The direct carbonization of low-cost and naturally available materials provides a potential alternative to commercial anodes with high specific surface area. In new work, scientists demonstrate a new procedure to generate novel macroporous carbon prepared from a fibrous loofah sponge.

Posted: Dec 17th, 2013

Microscale garbage truck cleans polluted water

micromotorThe construction of artificial micro- and nanomotors is a high priority in the nanotechnology field owing to their great potential for diverse potential applications, ranging from targeted drug delivery, on-chip diagnostics and biosensing, or pumping of fluids at the microscale to environmental remediation. In new work, researchers have now reported the first example of micromotors for the active degradation of organic pollutants in solution. The novelty of this work lies in the synergy between internal and external functionality of the micromotors.

Posted: Dec 2nd, 2013

Artificial organelles decontaminate polluted waters

liposomeEvery year, large quantities of antibiotics are released into lakes and rivers as a byproduct of their use in farming and medicine. Antibiotics in the environment can select for antibiotic-resistant bacterial populations, which can cause severe infections if they come into contact with humans or animals. In addition, antibiotics can disrupt the natural bacterial flora that plays a vital role in maintaining the balance of ecosystems. Scientists have now found that solar-powered proteoliposomes derived from bacteria can extract and store contaminants released into natural bodies of water,

Posted: May 7th, 2013

Nanotechnology and the environment - transformation of nanomaterials

dropletTo date, the predominant focus of the nanotechnology risk research endeavor has been defining the fate, transport, and toxic properties of pristine or "as manufactured" nanomaterials. However, the high surface to volume ratio and reactivity of nanoparticles makes them highly dynamic in environmental systems. The resulting transformations of the nanomaterials will affect their fate, transport, and toxic properties. A recent review summarizes what is known about chemical, physical, and biologically mediated transformations of nanomaterials in natural systems and their effects on the resulting nanomaterial behavior.

Posted: Jan 10th, 2013

Sustainability of nanotechnology growth requires high-throughput screening techniques

abiotic_assayAs nanotechnologies are beginning to empower our lives in so many ways, understanding the environmental health and safety aspect of nanotechnology has become a crucial issue. The lack of information on the impact of engineered nanomaterials on organisms and the environment motivates researchers all over the world to strive for a better understanding of the implications of nanotechnology applications. Researchers have now provided a mechanistic understanding on how nanomaterials affect zebrafish embryos development and specifically answers the question on what causes the embryos to fail hatching at due time.

Posted: Dec 20th, 2012

Nanotechnology strategy for water-quality testing with artificial 'microfish'

water_testingResearchers are applying various strategies to designing nanoscale propulsion systems by either using or copying biological systems such as the flagellar motors of bacteria or by employing various chemical reactions. Different practical micromotor applications, ranging from drug delivery, to target isolation and environmental remediation, have thus been reported over the past 2-3 years. Yet, there are no reports on a nanomachine-based toxicity assay approach, analogous to the use of live aquatic organisms for testing the quality of our water resources.

Posted: Dec 19th, 2012