Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 109 in category Graphene (newest first):


Crumpled graphene boosts performance of high-energy lithium storage materials

crumpled_grapheneA three-dimensional crumpled graphene-encapsulated nickel sulfide electrode is reported as a superior high-energy lithium storage material. Compared with an electrode without crumpled graphene encapsulation, the optimized electrode yields significant improvements, especially in the cycling stability and rate capability. This enhanced performance is attributed to the 3D framework providing high continuous electron pathway and more free space for charge and mass transfer, and the stabilizing effect of the crumpled graphene based stretchy shell.

Posted: Aug 6th, 2014

Questions arise on the stability of graphene as a platform for photocatalysis

graphene_flakesEver since its discovery in 2004, graphene has been considered a relatively stable, high surface area platform to anchor nanostructured catalyst materials for various electrochemical and photocatalytic applications. The emergence of solution-based graphene in the form of graphene oxide has enabled new wet-chemistry approaches to the creation of graphene-based nanocomposites. A new study raises questions about the long-term stability of reduced graphene oxide in an aqueous environment where hydroxyl radicals can be present as part of the photocatalytic reaction cycle.

Posted: Jul 28th, 2014

Lithium-doped graphene approaches the limits of transparency and conductivity

graphene_electrodeTransparent conductive coatings pervade modern technology. They are a critical component of optoelectronic devices such as smartphone and tablet displays as well as solar cells. The search for novel transparent electrode materials with good stability, high transparency and excellent conductivity is driven by the required trade-off between transparency and conductivity. In new work, researchers now have simultaneously increased the conductivity and transparency of ultra thin graphite by lithium intercalation.

Posted: Jul 24th, 2014

Layered nanosheet membranes for ultrafast molecule separation

nanofiltrationResearchers have developed a new separation membrane with 2D layered transition metal dichalcogenides (tungsten disulfide) for size-selective separation of small molecules of about 3 nm. The as-prepared WS2 membranes exhibit 5 times higher water permeance than graphene oxide membranes with similar rejection. To further improve the water permeance, they team employed ultrathin metal hydroxide nanostrands to create more fluidic channels while keeping the rejection rate of specific molecules unchanged.

Posted: Jun 17th, 2014

Graphene quantum dot band-aids disinfect wounds

antibacterial_applicationA growing body of medical nanotechnology research deals with the development of antibacterial applications, ranging from nanotechnology-based approaches for diagnosing superbugs to antimicrobial surface coatings and wound treatment with antibacterial nanomaterials. Especially silver nanomaterials have been used effectively against different bacteria, fungi and viruses but also carbon nanomaterials like nanotubes and graphene. In new work, researchers have now designed an antibacterial system combining graphene quantum dots with a low dose of a common medical reagent, hydrogen peroxide H2O2.

Posted: Jun 12th, 2014

Novel nanocarbon architecture makes a superior bifunctional electrocatalyst

NanocarbonRenewable and high-capacity energy systems like fuel cells and metal-air batteries are key components in any scenario on future energy systems free of fossil fuels. The performance of fuel cells largely depends on the oxygen reduction reaction - the process that breaks the bonds of the oxygen molecules - which is substantially affected by the activity of the cathode catalyst. Researchers have now demonstrated the synthesis of a novel N-doped graphene/single-walled carbon nanotube hybrid material by a facile and cost-favorable one-step CVD method.

Posted: Jun 9th, 2014

Graphene from fingerprints

fingerprintOver the past few years, researchers have developed numerous methods for synthesizing graphene. The synthesis of high-quality graphene is usually prepared by a complex and costly process - epitaxial growth on transition metal surfaces via chemical vapor deposition using high-purity hydrocarbons as precursors. In new work, researchers demonstrate graphene synthesis by liquid precursor deposition, a process that may give access to a wider range of substrate materials for graphene growth.

Posted: May 28th, 2014

Graphene nanomotor mimics internal combustion engine

graphene_nanomotorMost nanomotors designs are powered by quantum or, in most cases, catalytic chemical processes, the nanoscale equivalent of conventional internal heat engines that are so prevalent in our daily life has been missing. Researchers have now suggested a new type of ultrathin graphene engine which mimics an internal combustion engine system. This graphene engine consists of only a few parts - functionalized graphene, laser light, and substrate, which would make it simple to work with.

Posted: May 16th, 2014