Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 380 in category Fabrication Technologies and Devices (newest first):

 

How nanostructure geometry affects polymer photovoltaic device efficiency

nanostructureConjugated polymer based organic photovoltaic (OPV) devices have been the subject of increasing research interest over the past years due to their potential of being light weight, mechanically flexible, semitransparent. To increase the efficiency of OPV, it is necessary to achieve a precisely controlled donor-acceptor phase separation within the short exciton diffusion length without dead ends, as well as a high hole mobility within the polymer. Now, researchers have demonstrated the effects of nanostructure geometry on the nanoimprint induced P3HT chain alignment and the performance of nanoimprinted photovoltaic devices.

Posted: Jul 22nd, 2014

Self-assembly machines - a vision for the future of manufacturing

self-assemblyIndustrial production processes, by and large, rely on robotic assembly lines that place, package, and connect a variety of disparate components. While the manufacturing world is dominated by robots, there are applications where the established processes of serial 'pick and place' and manipulation of single objects reach scaling limits in terms of throughput, alignment precision, and the minimal component dimension they can handle effectively. By contrast, the emerging methods of engineered self-assembly are massively parallel and have the potential to overcome these scaling limitations.

Posted: Jul 10th, 2014

A universal and rapid method for transferring nanostructures

nanowiresMany nanofabrication techniques depend on creating a structure on one substrate and then transferring it via various processes onto another, desired, substrate. Often, these methods are not generally applicable as they suffer from the process-specific drawbacks, such as for instance intolerance of transferred nanostructures to chemical etchant, and the harsh thermal environment needed. A novel universal and rapid method allows transferring nanostructures with various dimensions onto diverse substrates with high fidelity.

Posted: Jul 8th, 2014

A room-temperature alternative to reducing the thermal conductivity of crystalline silicon

crystalline_siliconThermoelectric materials hold great promise for turning waste heat back into useful power and are touted for use in hybrid cars, new and efficient refrigerators, and other cooling or heating applications. But they have one big drawback: they are very inefficient. Since thermoelectric devices work by maintaining a temperature difference between their different sides, it is important that the used materials have low conductivity, i.e. are good thermal insulators.

Posted: Jul 7th, 2014

Controlling nanotube orientation in 3D architectures

3D_nanostructureThe microstructures of carbon nanotube assemblies determine their properties, for example, highly graphitized CNTs exhibit excellent mechanical and electrical properties; while CNTs with defects and poor crystallinity are beneficial for research on field emission property and hydrogen storage capacity. Therefore, it is of vital importance to control the CNT microstructures effectively for desired applications. A new technique can solve a problem of three-dimensional orientation control of CNTs in microscopic scale.

Posted: Jun 30th, 2014

Untethered active microgripper for single-cell analysis

microgripperThere are a wide range of passive devices such as beads, wells and tubes that can be used to capture and confine single cells. Previous active cell grippers with moving parts have relied on electrical modalities which can be challenging to implement off-chip and in a highly parallel manner. Researchers have now, for the first time, demonstrated an untethered active microgripper that can be used to capture and contain single cells.

Posted: Jun 25th, 2014

Embedded 3D printing for soft robotics fabrication

sensorA significant challenge in soft robotics involves fabricating soft sensors and actuators which, so far, have been very tedious to produce. Building soft sensors used by roboticists usually requires a multi-step, manual molding-lamination-sealing-infilling process. As a result, the design and fabrication process is cumbersome; the sensor form factors are unnecessarily limited; and there are issues with mechanical robustness. Now, though, researchers have demonstrated a new method for creating highly stretchable sensors based on embedded 3D printing of a carbon-based resistive ink within an elastomeric matrix.

Posted: Jun 24th, 2014

The long and tortuous path of EUV lithography to full production

EUV_lithographyEUV lithography was first included in the next-generation lithography road maps in the early 90s, but after about 20 years it is not yet ready for prime time. In this article we briefly analyze the history of EUV in the last 2 decades and the situation as of today. Extreme ultraviolet technology posed and still poses formidable challenges as it is based on principles vastly different from conventional DUV (deep ultraviolet) lithography.

Posted: Apr 24th, 2014