Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 384 in category Fabrication Technologies and Devices (newest first):

 

Nanotechnology is getting closer to 3D nanoprinting

3D_nanoprintingFabrication of three-dimensional (3D) objects through direct deposition of functional materials - also called additive manufacturing - has been a subject of intense study in the area of macroscale manufacturing for several decades. These 3D printing techniques are reaching a stage where desired products and structures can be made independent of the complexity of their shapes. Researchers in Korea have now shown that nanoscale 3D objects such as free-standing nanowalls can by constructed by an additive manufacturing scheme.

Posted: Feb 5th, 2014

Researchers report revolutionary technique to prepare nanowires (w/video)

nanowire_synthesisOver the years, researchers have developed a large number of techniques to synthesize nanowires and nanotubes in the laboratory. These procedures vary widely in their hardware requirements and methodology. Nevertheless, they all share a set of common goals: simplicity of protocol; fast execution; and low energy input. Now, an international group of scientists has reported a breakthrough in all three of these areas, leading to a revolutionary and remarkably simple technique for preparing one-dimensional nanostructures. As an example, they demonstrate a unique approach to growing amorphous boron nanowires.

Posted: Feb 4th, 2014

Active microfluidic chips inkjet-printed on normal paper

Paper could lead to low-cost innovative devices and applications is lab-on-a-chip technology. In new work, researchers in Korea have, for the first time, used paper as a platform material for actively actuating an electronic microfluidic chip. This novel, powered fluidic chip - known as an active paper open chip (APOC) - allows the full range of fluidic operations by implementing an electric input on paper via an electrowetting technique.

Posted: Jan 23rd, 2014

Water pinning nanostructures inspired by nature

dropIn the field on controlling liquid movement on surfaces, super water-repellent surfaces have been well-documented. In contrast, comparatively fewer reports are available on the design of water pinning surfaces. In new work, scientists have achieved polymer films with exceptionally high water pinning forces through nanoimprinted surface structures, without the incorporation of any chemical treatment. This work contributes to the field on water pinning surfaces by providing a simple geometrical rule-of-thumb design of nanostructures to engineer polymeric surfaces with tunable water pinning ability.

Posted: Jan 14th, 2014

Flexible thermoelectric generator from bulk silicon

semitransparent_siliconSilicon offers a unique combination between mechanical and electrical properties making it one of the most developed materials in semiconductor industry. However, silicon is brittle and cannot be flexed, hindering its potential for high performance electronics that is flexible, stretchable or applied to irregular shapes. Researchers have now developed a pragmatic approach to achieve high performance integrated electronic systems, including thermoelectric energy harvesters, onto flexible silicon substrates.

Posted: Dec 11th, 2013

Rewritable, transferable, and flexible sticker-type organic memory

stickyFuture electronics will look nothing like today's rigid boxes, be they the latest smartphones, tablets, or computers. Instead, they will be extremely light, soft, flexible, transparent, and integrated into everyday objects like paper or fabrics. These advanced electronic systems will be fabricated on soft substrates by integrating multiple crucial components such as logic and memory devices as well as their power supply. Researchers have now successfully demonstrated a rewritable, transferable, and flexible sticker-type organic memory on arbitrary nonconventional substrates through a simple, low-temperature and cost-effective one-step methodology.

Posted: Oct 25th, 2013

Microfabrication inspired by Lego

silicon_blocksFor microprobes, both the pick-up and placement are challenging due to the adherent forces. For microgrippers, the pick-up is easier and secure due to the gripping motion, but the placement is still difficult. When a microgripper opens its gripping fingers, the microobject still adheres to one of the fingers by strong adhesion forces. Owing to force scaling laws, the adhesion forces at the microscale - capillary forces, van der Waals forces, and electrostatic forces - dominate gravity. To overcome these challenges, researchers have developed a manufacturing route to three dimensional silicon microsystems, which they termed 'micro-masonry', based on individual manipulation.

Posted: Oct 24th, 2013

Nanocoated fabric is super-repellent and self-healing

repellent_fabricAny coating, no matter how durable, is susceptible to physical and chemical damages. Self-healing, which has become a popular theme in the field of material science, can endow coatings with ability to recover their surface properties after being damaged. New work demonstrates that a superamphiphobic fabric with remarkable multi self-healing ability against both physical and chemical damages and exceptional liquid-repellency to low surface-tension liquids including ethanol can be achieved through a two-step wet-chemistry coating technique.

Posted: Oct 18th, 2013