Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 505 - 512 of 544 in category All (newest first):

 

A new medical nanotechnology discipline is emerging

A novel discipline is emerging in medicine: nanoscopic medicine. Based on the premises that diseases manifest themselves as defects of cellular proteins, these proteins have been recently shown to form specific complexes exerting their functions as if they were nanoscopic machines. Nanoscopic medicine refers to the direct visualization, analysis (diagnosis) and modification (therapy) of nanoscopic protein machines in life cells and tissues with the aim to improve human health. The term nanoscopic medicine was coined by a group of researchers in Germany whose mission is to extend live cell nanoscopy into a comprehensive diagnostic and therapeutic scheme. This includes both the creation of a set of novel instruments and the analysis of nanoscopic protein machine networks in health and disease. In addition, they seek to construct artificial devices mimicking cellular nanomachines.

Dec 15th, 2006

Potent antioxidants designed by nanotechnology

There has been a great deal of interest in the toxicity of nanoparticles in the context of respiratory health. The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. Research has shown that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. This has led researchers to the conclusion that there is a potential for engineering this group of nanoparticles for therapeutic purposes.

Dec 8th, 2006

Creating the nanotechnology wunderkind in pharmaceutics: multifunctional nanocarriers

The last few years saw tremendous progress in the use of nanoparticles to enhance the in vivo efficiency of many drugs. Currently used pharmaceutical nanocarriers, such as liposomes, micelles, nanoemulsions, polymeric nanoparticles and many others demonstrate a broad variety of useful properties, such as for instance increased longevity in the blood, specific targeting to certain disease sites, or enhanced intracellular penetration. Some of these pharmaceutical carriers have already made their way into clinics, while others are still under preclinical development. In the next phase of developing nanocarriers, researchers are intrigued by the possibility to synthesize pharmaceutical nanocarriers that possess not only one but several properties. Such particles can significantly enhance the efficacy of many therapeutic and diagnostic protocols. A brandnew review paper considers current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration and contrast loading.

Dec 1st, 2006

Applying nanotechnology to better heal wounds

Wound healing is a complex process and has been the subject of intense research for a long time. Wound healing proceeds through an overlapping pattern of events including coagulation, inflammation, proliferation, and matrix and tissue remodeling. The holy grail for wound healing is accelerated healing without scars. Silver has been used for centuries to prevent and treat a variety of diseases. Its antibacterial effect may be due to blockage of the respiratory enzyme pathways and alteration of microbial DNA and the cell wall. In addition to its recognized antibacterial properties, some authors have reported on the possible pro-healing properties of silver. The use of silver in the past has been restrained by the need to produce silver as a compound, thereby increasing the potential side effects. Nanotechnology has provided a way of producing pure silver nanoparticles and this has provided a new therapeutic modality for use in burn wounds. Nonetheless, the beneficial effects of silver nanoparticles on wound healing remain unknown. A new study reports that silver nanoparticles can promote wound healing and reduce scar appearance.

Nov 28th, 2006

Photocatalytic growth process for metallic nanocages could double as biomolecular nanotagging

Back in March Nanowerk Spotlight reported on work by Sandia researchers who developed a range of novel platinum nanostructures with potential applications in fuel and solar cells (see: Novel platinum nanostructures). Through the use of liposomal templating and a photocatalytic seeding strategy the Sandia team produced a variety of novel dendritic platinum nanostructures such as flat dendritic nanosheets and various foam nanostructures (nanospheres and monoliths). In an intriguing follow-up report on the growth of hollow platinum nanocages, they now show for the first time a one-to-one correspondence between the porphyrin photocatalyst molecules and the seed particles that go on to grow the dendrites. This indicates that the whole process might be used for nanotagging biological molecules and other structures that have been labeled with a photocatalytic porphyrin.

Nov 14th, 2006

Molecular imaging as a step towards personalized medicine

Conventional diagnostic imaging is mainly based on morphological contrast that is a result of different general tissue characteristics. Molecular imaging is a new approach for detecting diseases much earlier, visualizing biological processes at the cellular and molecular level in living organisms, and detecting changes in biochemistry. Corresponding molecular markers appear in quite low concentrations. Hence, the imaging technique must be very sensitive. Magnetic resonance imaging (MRI) has some significant advantages in terms of using non-ionizing radiation (in contrast to x-rays) and giving high resolution tomographies for any arbitrary position and orientation. However, conventional MRI suffers from inherent low sensitivity. A new method, using xenon as the signal source, was developed by researchers in California and will make MRI an important technique in molecular imaging, offering a huge potential for specific detection of disease markers. The new technique allows detection of signals from molecules present at 10,000 times lower concentrations than conventional MRI techniques. Called HYPER-CEST, for hyperpolarized xenon chemical exchange saturation transfer, this new technique could become a valuable tool for medical diagnosis, including the early detection of cancer.

Nov 7th, 2006

Fluorescent nanobodies could revolutionize biomedical research - thanks to camels

Antibodies are large Y-shaped proteins used by the immune system to identify and neutralize foreign objects like bacteria and viruses. Each antibody recognizes a specific antigen unique to its target. That makes them valuable tools for the analysis of biomolecules in research, diagnostics and therapy. However, antibodies are huge (150 kDa) biomolecules and are not functional within a living cell due to the reductive environment of the cytoplasm. Normally, antibodies are used to detect antigens on fixed an permeabilized cells (in other words: dead cells). But neither does that provide any information about the dynamic changes of the antigen within different stages of the cell cycle, nor about its overall mobility. A research group at the University of Munich has now succeeded in developing much smaller molecules for antigen detection in living cells.

Nov 1st, 2006

New potent nanoassemblies to fight cancer and HIV

Nucleoside analogues, which are a class of therapeutic agents, display significant anticancer or antiviral activity by interfering with DNA synthesis. They work by incorporating into the elongating DNA strands and terminating the extension process. However, they also affect normal cell growth, such as bone marrow cells, so there can be significant toxic effects. Further limitations to their use are relatively poor intracellular diffusion, rapid metabolism, poor absorption after oral use, and the induction of resistance. French and Italian researchers have now come up with a completely new approach to render anticancer and antiviral nucleoside analogues significantly more potent. By linking the nucleoside analogues to squalene, a biochemical precursor to the whole family of steroids, the researchers observed the self-organization of amphiphilic molecules in water. These nanoassemblies exhibited superior anticancer activity in vitro in human cancer cells.

Oct 19th, 2006