Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 295 in category All (newest first):


Turning food and plastic waste into valuable nanomaterials for energy applications

coconut-husksOur society generates staggering amounts of waste in all areas of economic activities. Foremost among them, apart from energy waste, are the food and plastic sectors. However, both food and plastic wastes are potentially valuable sources of carbon. are working on upcycling of waste materials to high-value carbon by combining materials science and nanotechnology approaches to develop functional nanostructures for advanced energy storage, catalysis, water purification, and biosensor applications.

Feb 21st, 2023

New experimental setup achieves unprecedented accuracy in strain engineering of 2D materials

2D-material-bendingA new motorized three-point-bending apparatus has been developed that is capable of automating strain engineering experiments on two-dimensional (2D) materials. The setup can be used to apply precise, uniform strain to 2D materials such as MoS2, allowing researchers to study the effects of strain on the electrical and optical properties of these materials. The system can also be used to study straintronic devices, devices whose output characteristics can be adjusted by means of applied strain.

Dec 16th, 2022

Massive Monte-Carlo simulation guided data-driven model for 2D Curie temperature

machine-learningMagnetism at atomically thin two-dimensional (2D) materials is of essential interest to scientists and engineers since it has the potential to revolutionize modern information technology enabling ultra-fast and ultra-small novel electronic and magnetic devices. However, most of the experimentally demonstrated 2D magnets possess a Curie point far below the room temperature, limiting their application in the real world. In new work, researchers developed an end-to-end computational pipeline that can predict the Curie temperature accurately from the first principles-based quantum mechanical calculations.

Dec 12th, 2022

One-dimensional Weyl semimetals as unique topological materials for future electronics

nanoribbonsRecent investigations suggest that topological semimetals reveal unique properties that can enable unprecedented functionalities for future electronics. New research results shed light on the specifics of electron transport in quasi-one-dimensional topological Weyl semimetals and can be important for their proposed applications as downscaled interconnects. The results obtained in this work can be used for developing assessment methodologies for the reliability of topological semimetals.

Nov 22nd, 2022

One-unit-cell thick semiconductors with room-temperature magnetism

2D-sheetThe discovery of magnetism in two-dimensional (2D) ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. However, 2D magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Researchers now show that high-quality, nonlayered cobalt ferrite nanosheets as thin as a single unit cell can be synthesized via van der Waals epitaxy.

Nov 15th, 2022

Electrical gating of the charge-density-wave quantum phases opens up innovative electronic applications

charge-density-wave-domainsThe 1T polymorph of TaS2 is one of the prominent members of the quasi-2D van der Waals materials that reveal several charge-density-wave (CDW) phase transitions in the form of resistivity changes and hysteresis. However, despite numerous attempts, the electrical gating of the CDW phase, which is needed for many practical applications, has remained elusive - until now. Researchers report electrical gating of the CDW quantum phases in h-BN/1T-TaS2.

Nov 1st, 2022

Precise high-speed trajectory tracking and multi-target detection with a novel position sensitive detector

photodetectorResearchers demonstrate a multitarget real-time trajectory tracking system by using a time-division position sensitive detector (TD-PSD) system by employing a graphene-silicon Schottky heterojunction. The system allows for multi-target real-time trajectory tracking with a maximum image output frame rate of up to 62 000 frames per second (which is superior to commercial optical high-speed motion capture systems of about 1000 frames per second). This breaks the bottleneck in precise high-speed trajectory tracking and multi-target detection of traditional position sensitive detectors.

Oct 10th, 2022

MXene with its X factor may help downscaling 2D transistors

transistorResearchers show how MXenes' rich chemistry can be used to create doping-free 2D transistors with intrinsically low resistive contacts while maintaining balance mode operation. With a suitable functional termination, MXenes can become a semiconductor or a metal with a different work function. The researchers exploit this unique property of MXene to propose a Schottky barrier transistor, which can be implemented with a bare MXene by converting it to a semiconductor in the channel region with strategic functionalization.

Sep 27th, 2022