Showing Spotlights 297 - 304 of 313 in category All (newest first):
The extraordinary mechanical properties of carbon nanotubes (CNTs) have generated strong research interest in their possible use in reinforced composite materials. So far, different studies using carbon-nanotube reinforcements in polymer composites have reported only small improvements in the bulk mechanical properties compared with traditional fiber-reinforced composites. Through a novel approach, researchers have created a CNT-based composite material that exhibits significant improvements in fracture performance and structural damping.
Jun 2nd, 2006
Researchers in China are proposing a nanoelectronic switch based on telescoping double-walled carbon nanotubes (TDWCNT). By varying the overlapping length at the junction, one could control the conducting states and change it between on (high conductance state) and off (low conductance state).
May 26th, 2006
Among the many potential biology-related applications proposed for carbon nanotubes (CNTs) are high-sensitivity biosensors and bio-fuel cells. In order to create the synergy between the biomolecules and CNTs required to realize these applications, biomolecules, such as proteins and DNAs, must be connected to the CNTs.
May 19th, 2006
Researchers from the Zhengzhou Institute of Aeronautical Industry Management have developed a set of techniques to reduce the high cost of fabricating carbon nanotube field emission displays.
May 16th, 2006
Carbon nanotubes have been converted to diamonds before but a group of researchers in the PR China and the UK now managed to do this at a very low pressure of only 80 megapascal.
May 2nd, 2006
As a novel superstructure, single-walled carbon nanorings exhibit interesting transport properties, such as Aharonov-Bohm effects, magnetotransport or establishment of persistent currents. Researchers in China have developed a new technique to produce large quantities of small-diameter single-walled carbon nanotube (SWNT) nanorings.
Apr 24th, 2006
Building reliable interconnections between carbon nanotubes (CNTs) and external electrical and mechanical systems is an essential prerequisite to exploring the potential of CNTs in various domains. The formation of a stable and low-resistance ohmic contact between CNTs and electrodes contributes to speeding up the development of applications with CNTs in nanoelectronic devices with small size, fast speed and low power dissipation.
Apr 19th, 2006
There is universal consensus among scientists and researchers that more work is needed on all of the new carbon nanomaterials that have been developed over the past years to adequately assess their toxicity and health risks. A recent review addresses the current status, trends and perspectives of this issue.
Apr 18th, 2006