Showing Spotlights 233 - 240 of 240 in category All (newest first):
Organic thin film transistors (OTFTs) based on have attracted a great deal of attention as they are the critical components to fabricate low cost and large area flexible displays and sensors for future application in organic electronics technology. However, the major problem to use organic thin film transistor in logic circuits is the high operating voltage required. Researchers in India believe this problem can be solved by using organic materials with high dielectric constant as gate dielectrics.
Aug 10th, 2006
A potential solution to overcoming the fundamental scaling limits of silicon-based electronic circuitry is the use of a single molecular layer that self-organizes between two electrodes: so-called molecular electronics. Nature itself is highly efficient in using self-organized structures for electronic transport (photosynthesis in plants, nerve cells, etc.), and now similar self-organization of organic molecules is used to make electronic devices. Electric transport through single molecules has been studied extensively by both academic and industrial research groups. It has been demonstrated that the size of a diode, an element used in electronic circuitry, can be reduced reproducibly below 1.5 nm. Transport data, however, typically differ by many orders of magnitude and the fabrication hurdle is reliability and yield. Researchers in The Netherlands now have demonstrated a technology to manufacture reproducible molecular diodes with high yields (>95 %) with unprecedented lateral dimensions.
Aug 7th, 2006
Coating metallic nanoparticles in boron nitride could lead to new biomaterials for medical research and applications as well as nanoscale electromagnetic high frequency nanoscale electromagnetic devices.
Apr 20th, 2006
The area of nanodielectrics is relatively unexplored but research shows that nanocapacitors could find important applications for instance in energy storage and ultrasensitive transducers in nanoelectronic circuits.
Apr 14th, 2006
Researchers in Finland and The Netherlands demonstrated that it is possible to grow and wire a single platinum nanoparticle using a single-walled carbon nanotube, thus providing a bottom-up approach to building nanoelectrodes.
Apr 5th, 2006
Researchers in Switzerland have successfully integrated carbon nanotubes (CNTs) directly into a polysilicon chip. This technique is opening the way towards NEMS and CNT based system integration and the synthesis and evaluation of mechanical nano-scale transducers based on CNTs.
Mar 17th, 2006
A new methodology for integrating nanowires with micropatterned substrates using directed assembly and nanoscale soldering was developed by researchers at Johns Hopkins University in Baltimore. This overcomes the difficulty in making electrical contacts to nanoparticles, which so far has been a major limitation to fabricating integrated nanoelectronic devices containing large numbers of nanoparticles.
Mar 14th, 2006
Researchers at the Korea Institute of Science and Technology (KIST) succeeded in fabricating a fascinating ZnO nanosheet structure.
Feb 22nd, 2006