Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 833 - 840 of 2878 in category All (newest first):

 

Designing lubricant-infused surfaces with the help of predictive models

condensationLiquid-impregnated coating technologies involve nanoscale texturing of a surface, which is then coated with a - usually lubricating - liquid. A lubricant infused surface is comprised of a textured solid surface into which a lubricating fluid is spontaneously wicked. Lubricant infused surfaces can exhibit excellent fluid repellency if designed properly. Scientists now have developed a model to determine which lubricant infused surfaces will work and which will fail based on material properties.

Nov 23rd, 2017

Monitor your UV exposure with an adhesive nanoplasmonic patch

sunModerate exposure to sunlight has significant health benefits, however, exposure to ultraviolet (UV) radiation also is a major risk factor for most skin cancers. That means that, while moderate exposure to sunlight is recommended, there is a fine line to walk between beneficial and harmful amounts of UV exposure. To take the guesswork out of assessing the exposure to damaging UV rays, several wearable consumer UV sensors have already hit the market. Researchers have now proposed a simple and low-cost stick-on nanoplasmonic patch made of optically active silver nanoparticles embedded in a film of nanopaper. The patch changes color once it has been exposed to a certain amount of UV light.

Nov 22nd, 2017

Fabricating high-performance microsupercapacitors using fractal electrode designs

fractalsThe wearable power sources required for wearable and implantable electronic devices are limited by the size of the gadgets they power. Microsupercapacitors are newly emerging miniaturized high-power microelectrochemical energy-storage devices that can deliver high power density, fast charge and discharge, and a superior cycling lifetime. A new study shows that electrode fractal design is a viable strategy for improving the performance of integrated microsupercapacitors that use thin-film electrodes at no extra processing or fabrication cost.

Nov 20th, 2017

A single-atom catalyst supported on monolayers for nitrogen fixation

nitrogen_fixationSingle-atom catalysts (SACs) have emerged as a new frontier in heterogeneous catalysis, and demonstrated distinguishing performances for various reactions due to their high catalytic activity with a significantly reduced amount of metals used. However, the catalytic performance of SACs for nitrogen fixation and conversion has been rarely explored. Scientists now have proposed a quite promising single-atom-based electrocatalyst for N2 reduction to NH3 under ambient conditions.

Nov 17th, 2017

Flexible microbattery enables smart dental braces

dental_braceResearchers have demonstrated a novel approach toward smart orthodontics based on near-infrared red light from a mechanically flexible LED powered by flexible bio-safe batteries all integrated in a single 3D-printed dental brace. Integration of electronic devices in 3D printed dental aligners is a pragmatic approach towards implementing a flexible electronic technology in personalized advanced healthcare, particularly in orthodontics. Key to this smart brace is the use of a high-performance flexible solid-state microbattery.

Nov 16th, 2017

Powering a piezoelectric nanogenerator with onion skin bio waste

onionSelf-powered nanotechnology based on one type of nanogenerators - piezoelectric nanogenerators - aims at powering nanodevices and nanosystems using the energy harvested from the environment in which these systems are suppose to operate. This offers a completely new approach for harvesting mechanical energy using organic and inorganic materials. Researchers have now reported a novel bio-piezoelectric nanogenerator using naturally abundant, self-aligned cellulose fibrous untreated onion skin as efficient piezoelectric material.

Nov 15th, 2017

Thin-film transistors get wavy

flexible_electronicsFor enhanced visualization experience, high resolution display technology with fast frame rate to suppress the motion blur at that resolution is essential. In modern display technologies, which are mostly active matrix display system, there are planar thin film transistors (TFTs) which enable both high resolution and fast imaging. Scaled TFTs can provide high resolution. Fast switching can be facilitated by the scaling as well as high mobility channel material. In new work, researchers have shown that both high resolution and fast frame rate display technology is possible, irrespective of the active channel material.

Nov 14th, 2017

Atomic tuning of electrocatalysts

Efficient electrocatalysts lie at the heart of a series of significant energy conversion and storage technologies, and atomically precise understanding of the influences of component dopants is crucial for looking into the reaction mechanism and controlled synthesis of the desired electrocatalysts. Graphitic carbon nitride is a promising electrocatalytic material owing to its intrinsically high N content and abundant edge sites. This material has been researched towards some of the most significant electrocatalytic reactions including oxygen reduction/evolution reaction and hydro evolution reaction. New work has comprehensively explored the influences of component elements within graphitic carbon nitride motiety for electrocatalytic reactions.

Nov 13th, 2017