Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 33 - 35 of 35 in category All (newest first):

 

Novel graphene-gold metasurface architecture provides significant gains in plasmonic detection sensitivity

graphene_sensorWith increasing sensitivity, electrical, mechanical and optical sensors are able to detect low molecular weight chemical and biological analytes under ever more dilute conditions. At the same time, though, researchers want to keep the sensing process as simple as possible without complex functionalization and complicated preparation steps for the in situ detection. A novel graphene-gold metasurface-based biosensing architectures makes extreme phase singularities possible due to a strong field enhancement on the graphene-gold interface.

Sep 14th, 2015

Novel nanosphere lithography to fabricate tunable plasmonic metasurfaces

nanosphere_lithographyIn conventional nanosphere lithography, the nanosphere configurations in the layers are determined by a spontaneous self-assembly process. Therefore, the final configurations are limited to those with or close to the minimal free energy giving rise to very simple patterns. Researchers have now managed to circumvent this thermodynamical restriction by putting the monolayers in a confined environment and constructing the bilayers with sequential stacking, both of which are critical for the formation of moire patterns.

Jun 18th, 2015

A new type of optical sensing device based on artificial metamaterials

metamaterialOver the past decade, electromagnetic metamaterials have become an extremely active field of research in both the physics and the engineering communities. Metamaterials gain their properties from their structure rather than directly from their composition and show the peculiarity of having an index of refraction at optical frequencies from negative to very high positive values. Researchers have now suggested a new type of optical sensing device based on artificial metamaterials with topological darkness.

Nov 26th, 2013