Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 876 - 900 of 1695

 
Phonasum is a network of researchers and practitioners working in the field of photocatalysis from all around Europe. The main objective is to increase via a concerted European effort the fundamental knowledge of nanocrystalline photoactive materials and development of new products, which utilize self sterilizing and self cleaning photoactive materials in specific industrially relevant application fields such as self-cleaning and anti-microbial surfaces, water treatment, air purification and general hygienic applications.
PHOREMOST is the result of a decision to establish a Network of Excellence in the area of Nanophotonics and Molecular Photonics to address the near- and long term needs of photonic functional components.
This joint effort gathers a number of leading German research institutions from the Max Planck Society, the Helmholtz Society, and the Fraunhofer Society together with partners from Germany's Photonics industry. The PhoNa consortium conducts research on a broad spectrum of linear and nonlinear Photonic Nanomaterials, as e.g. metamaterials, photonic crystals, plasmonics, diffractive structures, and their application in fields such as biology, chemistry and material sciences.
This European consortium explores computing inside a single molecule using atomic scale technologies.
Quantum mechanics lies at the core of many of today's technologies as well as ongoing scientific discoveries and future innovations. The Pittsburgh Quantum Institute was established in 2012 to help unify and promote research in quantum science and engineering in the Pittsburgh area. PQI members have faculty appointments from Carnegie Mellon University, Duquesne University and the University of Pittsburgh in physics, chemistry and engineering disciplines. On this site you can find research profiles of PQI members, read about the latest research achievements, learn about PQI seminars and other events, and find connections to related centers in the Pittsburgh area.
EU-funded research project that aims to make plasmonics a key element in the future of the European photonics industry.
The first European research project that aims to utilize plasmonics for system-level applications and bring them into a Tb/s optical routing fabric for data interconnects.
PneumoNP is a collaborative research program aiming at the development of a nanotheragnostic system for the treatment of Gram-negative bacterial infections of the lung, with focus on Klebsiella pneumoniae caused infections.
The group of Professor Jin Kon Kim conducts research in high density data storage, polymerization and membrane with high selectivity using block copolymer nanostructures.
The CSS was established in 1997 to develop new supramolecular assemblies with desired structures, properties and functions by utilizing the principles of molecular recognition and self assembly. Emphasis is placed on the supramolecular systems that can provide the operating principles of molecular switch, molecular memory, and sensor.
Research on the development of new and facile synthetic routes for the formation of functional nanostructures and their applications.
Nanomaterials: physics of magnetic and molecular (dielectric) nanostructured materials for future applications in novel electronics.
The Department of Soft Condensed Matter deals with research topics such as Hydrogen Storage in Nanoporous Materials, photonic crystals or self-assenbling systems.
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen: Surface Treatements Engineering; Polymer and Composite Engineering; Nanotechnologies; Materials Design.
The Group has a well established experience in growth, characterization and processing of semiconductors and insulating materials.
INRC specializes in providing applied and theoretical research and development in the scientific and technological fields of material, chemical and environmental engineering, with a focus on the development, marketing, commercialization and manufacturing of advanced nanocomposites.
Research includes organic conducting nanolayers, e.g. PANI films. Applications: sensors, FET, nanowiring, nano- and molecular electronics.
PINSAT offeres BS and MS courses in nanosciences and nanotechnology.
PINSAT offeres BS and MS courses in nanosciences and nanotechnology.
PINSAT offeres BS and MS courses in nanosciences and nanotechnology.
PRISM is a multidisciplinary research center at Princeton University in the general field of materials science through photonics with a special emphasis on the hard material - soft material interface.
The mission of NanoStructures Laboratory (NSL) is to explore and develop 1) New nanotechnologies that will fabricate structures substantially smaller, better, and cheaper than current technology permits. and 2) Innovative nanoscale electronic, optoelectronic, and magnetic devices by combining cutting-edge nanotechnology with frontier knowledge from different disciplines.
The goal of this European Sixth Framework Programme Project is the development of a fast and flexible method for production of functions within 3D photonic crystals.
Established in April 2005 as a partnership between the Woodrow Wilson International Center for Scholars and the Pew Charitable Trusts. The Project is dedicated to helping ensure that as nanotechnologies advance, possible risks are minimized, public and consumer engagement remains strong, and the potential benefits of these new technologies are realized.
It is the aim of the FP6 program PRONANO that the new massively parallel scanning probe nanotools with VLSI ASNEMS (application specific nanoelectromechanical systems) chips inside should empower nanotechnologists and drive the rapid development of nanoscience, leading to new nanotechnology processes and their industrial exploitation. They will secure the future of nanotechnology with economic throughputs leading to new manufacturing industries.