Reference terms from Wikipedia, the free encyclopedia
 

Toba catastrophe theory

The Youngest Toba eruption was a supervolcanic eruption that occurred around 75,000 years ago at the site of present-day Lake Toba in Sumatra, Indonesia. It is one of the Earth's largest known explosive eruptions. The Toba catastrophe theory holds that this event caused a global volcanic winter of six to ten years and possibly a 1,000-year-long cooling episode.

In 1993, science journalist Ann Gibbons posited that a population bottleneck occurred in human evolution about 70,000 years ago, and she suggested that this was caused by the eruption. Geologist Michael R. Rampino of New York University and volcanologist Stephen Self of the University of Hawaiʻi at Mānoa support her suggestion. In 1998, the bottleneck theory was further developed by anthropologist Stanley H. Ambrose of the University of Illinois at Urbana–Champaign. Both the link and global winter theories are controversial.

The Youngest Toba eruption is the most closely studied supervolcanic eruption.

 
Note:   The above text is excerpted from the Wikipedia article Toba catastrophe theory, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Single atoms show their true color

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Mass production will soon make ultra-large nano transparent screens accessible to everyone

This innovative screen can adjust its transparency according to the environment and can be produced at a low cost, paving the way for the widespread adoption of large transparent screens, which until now have been prohibitively expensive.

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials

Researchers perform first scanning tunneling microscopy and spectroscopy inspection of 2D material with unique properties.

Designing photonic crystals with a genetic algorithm

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responds to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Artificial intelligence for studying twisted van der Waals magnets

Innovative techniques enable a streamlined and reliable analysis of these complex systems, eliminating the need for previous resource-intensive simulations and marking a significant advancement in the field.

Researchers discover way to 'grow' sub-nanometer sized transistors

Researchers developed a method for epitaxial growth of sub-1 nanometer wide 1D metals, used as gate electrodes in 2D semiconductor logic circuits, leading to ultra-miniaturized transistors.

An inexpensive, easy-to-use method to create solid-state nanopores

The technique addresses two key problems that have kept solid-state nanopores from being used more often to build biosensors that can measure biological and chemical reactions of a given sample.

Researchers achieve dual-functional supramolecular materials

Discrete supramolecular structures are versatile building blocks for applications like drug delivery, catalysis, and molecular machines. A new methodology enhances their self-assembly.

Self-assembling, highly conductive sensors could improve wearable devices

To advance soft robotics, skin-integrated electronics and biomedical devices, researchers at have developed a 3D-printed material that is soft and stretchable - traits needed for matching the properties of tissues and organs - and that self-assembles.

Can a computer chip have zero energy loss in 1.58 dimensions?

Fractals as a solution for inefficient energy use in information processing.