Reference terms from Wikipedia, the free encyclopedia
 

Stellar evolution

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing through the subgiant stage until it reaches the red-giant phase. Stars with at least half the mass of the Sun can also begin to generate energy through the fusion of helium at their core, whereas more-massive stars can fuse heavier elements along a series of concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses into a dense white dwarf and the outer layers are expelled as a planetary nebula. Stars with around ten or more times the mass of the Sun can explode in a supernova as their inert iron cores collapse into an extremely dense neutron star or black hole. Although the universe is not old enough for any of the smallest red dwarfs to have reached the end of their existence, stellar models suggest they will slowly become brighter and hotter before running out of hydrogen fuel and becoming low-mass white dwarfs.

Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating stellar structure using computer models.

 
Note:   The above text is excerpted from the Wikipedia article Stellar evolution, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk Astronomy & Space News:

 

Discovery sheds light on the origins of matter in the early universe

A new calculation helps scientists understand how matter formed out of the hot, dense soup of subatomic particles created by the Big Bang.

Fermi telescope finds new feature in brightest gamma-ray burst yet seen

In October 2022, astronomers were stunned by what was quickly dubbed the BOAT - the brightest-of-all-time gamma-ray burst. Now an international science team reports that data from the Fermi Gamma-ray Space Telescope reveals a feature never seen before.

Mega Jupiter discovered orbiting nearby star

Astronomers using the James Webb Space Telescope (JWST) have found a six times larger version of Jupiter, a mere 3.6 parsecs away.

Exoplanet-hunting telescope to begin search for another Earth in 2026

PLATO, or PLAnetary Transits and Oscillations of stars, is being built to find nearby potentially habitable worlds around Sun-like stars that we can examine in detail.

Opening up new ground in the search for dark matter

A proposed detector will allow physicists to cover uncharted territory in their search for elusive dark matter.

How astronomers are using pulsars to observe evidence of dark matter

Tantalising evidence of potential dark matter objects has been detected with the help of the Universe's 'timekeepers'.

New model unveils galaxy color-distance relationship for measuring cosmic structures

Scientists furnished a model for revealing what the color of a galaxy tells about its distance, to be used for measuring cosmic structures.

Astronomers find missing link in massive black hole formation

The discovery is the best candidate for a class of black holes astronomers have long believed to exist but have never found - intermediate-mass black holes formed in early stages of galaxy evolution.

Found with Webb: a potentially habitable world

A team of astronomers has made an exciting discovery about the temperate exoplanet LHS 1140 b: it could be a promising 'super-Earth' covered in ice or water.

Building materials for water-rich planets in the early solar system

Age data for certain classes of meteorite have made it possible to gain new findings on the origin of small water-rich astronomical bodies in the early solar system. These planetesimals continually supplied building materials for planets - also for the Earth, whose original material contained little water.

Check out more of the latest Astronomy & Space News here.