Reference terms from Wikipedia, the free encyclopedia
 

Moment magnitude scale

The moment magnitude scale (MMS; denoted explicitly with Mw  or Mw, and generally implied with use of a single M for magnitude) is a measure of an earthquake's magnitude ("size" or strength) based on its seismic moment. It was defined in a 1979 paper by Thomas C. Hanks and Hiroo Kanamori. Similar to the local magnitude scale (ML ) defined by Charles Francis Richter in 1935, it uses a logarithmic scale; small earthquakes have approximately the same magnitudes on both scales.

Moment magnitude (Mw ) is considered the authoritative magnitude scale for ranking earthquakes by size. It is more directly related to the energy of an earthquake than other scales, and does not saturate—that is, it does not underestimate magnitudes as other scales do in certain conditions. It has become the standard scale used by seismological authorities like the U.S. Geological Survey for reporting large earthquakes (typically M > 4), replacing the local magnitude (ML ) and surface wave magnitude (Ms ) scales. Subtypes of the moment magnitude scale (Mww , etc.) reflect different ways of estimating the seismic moment.

 
Note:   The above text is excerpted from the Wikipedia article Moment magnitude scale, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Self-assembling, highly conductive sensors could improve wearable devices

To advance soft robotics, skin-integrated electronics and biomedical devices, researchers at have developed a 3D-printed material that is soft and stretchable - traits needed for matching the properties of tissues and organs - and that self-assembles.

Can a computer chip have zero energy loss in 1.58 dimensions?

Fractals as a solution for inefficient energy use in information processing.

A combination of magnetic nanoparticles and chemotherapy drugs achieves greater efficacy against cancer cells

New study provides comprehensive and valuable information for the development of drug-based cancer therapies combined with magnetic nanoparticles and hyperthermia.

Nanorobot with hidden weapon kills cancer cells

Scientists have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.

Detecting lung cancer early with sugar-sensing nanotech

Researchers unveil a new diagnostic device that could help thousands of lung cancer patients get ahead of the disease before it spreads.

Engineers pioneer mass production of quantum dot lasers for optical communications

Reducing semiconductor laser production costs by 1/6 with quantum dot lasers for optical communications. Using 6-inch substrates instead of 2-inch: time reduction and mass production achieved.

Soft, stretchy electrode simulates touch sensations using electrical signals

Researchers developed a soft, stretchy electronic device that simulates pressure or vibration on the skin, advancing haptic technologies for realistic touch sensations.

New method developed for measuring thermal expansion in atomically thin materials

That insight can help address heat-related performance issues of materials incorporated into microelectronics, such as computer chips.

Studying thin films under extreme temperatures with reflectometry

Researchers have set a record by conducting thin film experiments at 1100 degrees C.

Gold nanoparticles kill cancer - but not as thought

New research reveals that larger, star-shaped gold nanoparticles are more effective at killing cancer cells by perforating cell membranes and inducing oxidative stress.