Reference terms from Wikipedia, the free encyclopedia
 

Lake-effect snow

Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated up by the lake water, picks up water vapor from the lake and rises up through the colder air above. The vapor then freezes and is deposited on the leeward (downwind) shores.

The same effect also occurs over bodies of saline water, when it is termed ocean-effect or bay-effect snow. The effect is enhanced when the moving air mass is uplifted by the orographic influence of higher elevations on the downwind shores. This uplifting can produce narrow but very intense bands of precipitation, which deposit at a rate of many inches of snow each hour, often resulting in a large amount of total snowfall.

The areas affected by lake-effect snow are called snowbelts. These include areas east of the Great Lakes in North America, the west coasts of northern Japan, the Kamchatka Peninsula in Russia, and areas near the Great Salt Lake, Black Sea, Caspian Sea, Baltic Sea, Adriatic Sea, and North Sea.

Lake-effect blizzards are the blizzard-like conditions resulting from lake-effect snow. Under certain conditions, strong winds can accompany lake-effect snows creating blizzard-like conditions; however, the duration of the event is often slightly less than that required for a blizzard warning in both the US and Canada.

If the air temperature is low enough to keep the precipitation frozen, it falls as lake-effect snow. If not, then it falls as lake-effect rain. For lake-effect rain or snow to form, the air moving across the lake must be significantly cooler than the surface air (which is likely to be near the temperature of the water surface). Specifically, the air temperature at an altitude where the air pressure is 850 millibars (85 kPa) (roughly 1.5 kilometers or 0.93 miles vertically) should be 13 °C (23 °F) lower than the temperature of the air at the surface. Lake-effect occurring when the air at 850 millibars (85 kPa) is much colder than the water surface can produce thundersnow, snow showers accompanied by lightning and thunder (caused by larger amounts of energy available from the increased instability).

 
Note:   The above text is excerpted from the Wikipedia article Lake-effect snow, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Plasmonic nanomaterials detect cancer genes in blood with ultra-high accuracy

Researchers have developed the world's most sensitive technology for detecting cancer mutant genes in blood.

Researchers create a one-dimensional gas out of light

The method used in the experiment could be used for examining quantum effects. This has enabled physicicts to test theoretical predictions about the transition into this exotic state of matter for the first time.

New guidelines for nanomedicine development to enhance clinical translation success

Global exper team generates world-first research quality standards that will help slash costs and reduce the time it takes to develop advanced nanomedicine treatments and make them available for patients.

Seeing like a butterfly: Optical invention enhances camera capabilities

Researchers developed an ultrathin metasurface, which can attach to a conventional camera and encode the spectral and polarization data of images captured in a snapshot or video through tiny, antenna-like nanostructures that tailor light properties.

Achieving a supercapacitor through the 'molecular coating' approach

Researchers have successfully increased the capacity, lifetime durability, and cost-effectiveness of a capacitor.

A new method captures the stochastic dynamics in coherent X-ray imaging

Scientists introduce an X-ray imaging method for nanoscale processes that avoids sample damage and allows femtosecond imaging with continuous wave radiation.

Scientists use magnetic nanotechnology to safely rewarm frozen tissues for transplant

Researchers created magnetic nanoparticles that generate heat to rapidly thaw tissues stored at -150 C. A two-stage method prevents overheating, aiding safe cryopreservation.

Multispectral smart window

Researchers developed an innovative multispectral smart window capable of regulating visible light while simultaneously blocking microwave signals.

Nature-derived nanobubbles could enable biomedical applications

Bioengineers developed a road map for the protein-protein interactions that give rise to gas vesicles, naturally occurring nanobubbles with potential use in biomedical applications.

Finger wrap uses sweat to provide health monitoring at your fingertips - literally

An electronic finger wrap that monitors vital chemical levels - such as glucose, vitamins, and even drugs - present in the same fingertip sweat from which it derives its energy.