Reference terms from Wikipedia, the free encyclopedia
 

Eris (dwarf planet)

Eris (minor planet designation 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. Eris is a trans-Neptunian object (TNO), has a high-eccentricity orbit, and is a member of the scattered disk. Eris was discovered in January 2005 by a Palomar Observatory-based team led by Mike Brown, and its discovery was verified later that year. In September 2006 it was named after the Greco-Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun, and the sixteenth-most massive overall in the Solar System (including moons). It is also the largest object that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometers (1,445 ± 7 mi) in diameter. Its mass is 0.27 percent that of the Earth and 127 percent that of dwarf planet Pluto, though Pluto is slightly larger by volume. As Eris orbits the Sun, it completes one rotation every 25.9 hours, making its day length similar to Earth's. However, other sources disagree on the rotation period.

It has one large known moon, Dysnomia. In February 2016, its distance from the Sun was 96.3 astronomical units (1.441×1010 km; 8.95×109 mi), roughly three times that of Pluto. With the exception of some long-period comets, until 2018 VG18 was discovered on December 17, 2018, Eris and Dysnomia were the most distant known natural objects in the Solar System.

Because Eris appeared to be larger than Pluto, NASA initially described it as the Solar System's tenth planet. This, along with the prospect of other objects of similar size being discovered in the future, motivated the International Astronomical Union (IAU) to define the term planet for the first time. Under the IAU definition approved on August 24, 2006, Eris is a "dwarf planet," along with objects such as Pluto, Ceres, Haumea and Makemake, thereby reducing the number of known planets in the Solar System to eight, the same as before Pluto's discovery in 1930. Observations of a stellar occultation by Eris in 2010 showed that it was very slightly smaller than Pluto, which was measured by New Horizons as 2,377 ± 4 kilometers (1,477 ± 2 mi) in July 2015.

 
Note:   The above text is excerpted from the Wikipedia article Eris (dwarf planet), which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Harvesting unused micro-vibration to generate electricity

Researchers developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.

Gold nanomembrane coaxes secrets out of surfaces

Using a special wafer-thin gold membrane, researchers have made it significantly easier to study surfaces. The membrane makes it possible to measure properties of surfaces that are inaccessible to conventional methods.

Researchers propose the next platform for brain-inspired computing

Neuromorphic computing mimics the brain's structure for energy efficiency. Using 2D TMD-based TFETs, it could achieve energy needs 100 times closer to the human brain.

Researchers develop tuneable anticounterfeiting material

New material continues to glow after UV light removed, can be programmed to disappear in stages.

Novel application of optical tweezers: colorfully showing molecular energy transfer

Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Foerster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.

Scientists discover new behavior of membranes that could lead to unprecedented separations

Researchers use new technique to overcome perceived limitation of membranes with pores of consistent size.

Controlling electronics with light: the magnetite breakthrough

Researchers have found that different light wavelengths can alter magnetite's state, affecting its electrical conductivity. This could revolutionize material design for electronics.

Breakthrough in nanoscale force measurement opens doors to unprecedented biological insights

Groundbreaking research has revealed a new way to measure incredibly minute forces at the nanoscale in watery solutions, pushing the boundaries of what scientists know about the microscopic world.

Generation of intense terahertz waves with a magnetic material

Researchers have discovered a new magnetic material that generates terahertz waves at an intensity about four times higher than that of typical magnetic materials.

Electric fields catalyse graphene's energy and computing prospects

A new study reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.