Reference terms from Wikipedia, the free encyclopedia
 

Ecological niche

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors (for example, by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same factors (for example, limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey). "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

A Grinnellian niche is determined by the habitat in which a species lives and its accompanying behavioral adaptations. An Eltonian niche emphasizes that a species not only grows in and responds to an environment, it may also change the environment and its behavior as it grows. The Hutchinsonian niche uses mathematics and statistics to try to explain how species coexist within a given community.

The concept of ecological niche is central to ecological biogeography, which focuses on spatial patterns of ecological communities. "Species distributions and their dynamics over time result from properties of the species, environmental variation..., and interactions between the two—in particular the abilities of some species, especially our own, to modify their environments and alter the range dynamics of many other species." Alteration of an ecological niche by its inhabitants is the topic of niche construction.

The majority of species exist in a standard ecological niche, sharing behaviors, adaptations, and functional traits similar to the other closely related species within the same broad taxonomic class, but there are exceptions. A premier example of a non-standard niche filling species is the flightless, ground-dwelling kiwi bird of New Zealand, which feeds on worms and other ground creatures, and lives its life in a mammal-like niche. Island biogeography can help explain island species and associated unfilled niches.

 
Note:   The above text is excerpted from the Wikipedia article Ecological niche, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Manipulation of nanolight provides new insight for quantum computing and thermal management

A new study provides fundamental insight into how light, electrons, and crystal vibrations interact in materials.

Digital twins and nanotechnology can transform agriculture

Researchers have developed an approach to increase crop yield and efficiency by making plants more resilient against disease and harmful environmental factors.

Sustainable, biodegradable HECP glass for smart materials and pharmaceuticals

Researchers developed a biodegradable HECP glass with enhanced properties, paving the way for applications in pharmaceuticals and innovative smart materials.

Using machine learning to speed up simulations of irregularly shaped particles

Researchers have trained neural networks to predict interactions between irregularly shaped particles to accelerate molecular dynamics simulations.

Superconductivity Is unpredictable at the edge

Two types of superconductivity compete at the edge between a topological semimetal and a conventional metal, causing the electrons to switch behavior erratically.

Harvesting coherent hypersound with elliptical micropillars

Scientists have harnessed elliptical micropillars to enhance the generation and detection of coherent acoustic phonons in the gigahertz range. This advancement represents a significant step forward in the development of more efficient nanoacoustic transducers.

AI tackles one of the most difficult challenges in quantum chemistry

The research shows how the technique can help solve fundamental equations in complex molecular systems.

New open-source Python tool revolutionizes design and modeling of micro optical elements

Researchers introduce open-source software that simplifies the design, simulation, and generation of lithography masks for micro optical elements and flat optics.

Metasurfaces that control thermal radiation in unprecedented ways

The advance shows promise for creating compact, inexpensive, and portable light sources, which are crucial for space-based applications, biological and geological field research, and military operations.

Nanocatalyst breakthrough revolutionizes wastewater treatment and pollutant degradation

The novel nanocatalyst demonstrated an impressive performance in activating peroxymonosulfate (PMS) for the degradation of bisphenol A, achieving a rate constant nearly 20 times higher than that of conventional catalysts.