Reference terms from Wikipedia, the free encyclopedia
 

Biomass (ecology)

The biomass is the mass of living biological organisms in a given area or ecosystem at a given time. Biomass can refer to species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all species in the community. It can include microorganisms, plants or animals. The mass can be expressed as the average mass per unit area, or as the total mass in the community.

How biomass is measured depends on why it is being measured. Sometimes, the biomass is regarded as the natural mass of organisms in situ, just as they are. For example, in a salmon fishery, the salmon biomass might be regarded as the total wet weight the salmon would have if they were taken out of the water. In other contexts, biomass can be measured in terms of the dried organic mass, so perhaps only 30% of the actual weight might count, the rest being water. For other purposes, only biological tissues count, and teeth, bones and shells are excluded. In some applications, biomass is measured as the mass of organically bound carbon (C) that is present.

The total live biomass on Earth is about 550–560 billion tonnes C, and the total annual primary production of biomass is just over 100 billion tonnes C/yr. The total live biomass of bacteria may be as much as that of plants and animals or may be much less. The total number of DNA base pairs on Earth, as a possible approximation of global biodiversity, is estimated at (5.3±3.6)×1037, and weighs 50 billion tonnes. Around 2020, anthropogenic mass (human-made material) is expected to exceed all living biomass on earth.

 
Note:   The above text is excerpted from the Wikipedia article Biomass (ecology), which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

A 2D device for quantum cooling

Engineers developed a device that efficiently converts heat into electricity at temperatures below outer space, aiding quantum computing advancements requiring ultra-low temperatures.

Atomic force microscopy in 3D

The technique used is an extension of atomic force microscopy and is a promising approach for visualizing various 3D biological systems.

Scientists observe record-setting electron mobility in a new crystal film

The newly synthesized material could be the basis for wearable thermoelectric and spintronic devices.

Single atoms show their true color

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Mass production will soon make ultra-large nano transparent screens accessible to everyone

This innovative screen can adjust its transparency according to the environment and can be produced at a low cost, paving the way for the widespread adoption of large transparent screens, which until now have been prohibitively expensive.

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials

Researchers perform first scanning tunneling microscopy and spectroscopy inspection of 2D material with unique properties.

Designing photonic crystals with a genetic algorithm

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responds to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Artificial intelligence for studying twisted van der Waals magnets

Innovative techniques enable a streamlined and reliable analysis of these complex systems, eliminating the need for previous resource-intensive simulations and marking a significant advancement in the field.

Researchers discover way to 'grow' sub-nanometer sized transistors

Researchers developed a method for epitaxial growth of sub-1 nanometer wide 1D metals, used as gate electrodes in 2D semiconductor logic circuits, leading to ultra-miniaturized transistors.

An inexpensive, easy-to-use method to create solid-state nanopores

The technique addresses two key problems that have kept solid-state nanopores from being used more often to build biosensors that can measure biological and chemical reactions of a given sample.