Nanotechnology Research Laboratories

 

Showing results 171 - 180 of 593 of research organizations in USA:

 
ISN's charge is to pursue a long-range vision for how technology can make soldiers less vulnerable to enemy and environmental threats. The ultimate goal is to create a 21st century battlesuit that combines high-tech capabilities with light weight and comfort.
The mission of the Varanasi Group is to bring about transformational efficiency enhancements in various industries including energy (power generation to oil and gas to renewables), water, agriculture, transportation and electronics cooling by fundamentally altering thermal-fluid-surface interactions across multiple length and time scales.
The research in the Laboratory for Multiscale Regenerative Technologies is focused on the applications of micro- and nanotechnology to tissue repair and regeneration. The long-term goals are to improve cellular therapies for liver disease, develop enabling tools to systematically study the fate of stem cells, and design multifunctional nanoparticles for cancer applications.
An experimental group in the Department of Materials Science and Engineering that is studying spin dynamics and spin-electronics in nanoscale magnetic materials and devices. The Beach group's work aims at exploring the fundamental underpinnings of new concepts in spin-based data storage, computation, and communications.
The Sengupta laboratory is focused on developing engineering solutions for complex disease. Our research lies at the interfaces of fundamental biology, medical applications and nano-scale engineering, where basic understanding of biology inspires the development of novel technology or medical applications.
The Marble Center for Cancer Nanomedicine brings together leading faculty from the Koch Institute for Integrative Cancer Research to focus on grand challenges in cancer detection, treatment, and monitoring that could benefit from the emerging biology and physics of the nanoscale.
The Mechatronics Research Laboratory (MRL) is devoted to the control, system dynamics and design challenges associated with the fields of nanotechnology, biotechnology and robotics. Current research includes control techniques of atomic force microscopes (AFM) to improve imaging, using the AFM to sequence DNA, filtering of nano-scale biomolecules in fluidic suspension, and design of energy-efficient robotics.
The Nanoscale Sensing group applies microfabrication technologies towards the development of novel methods for probing biological systems. Current projects focus on using electrical and mechanical detection schemes for analyzing biomolecules and single cells.
The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.