Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 553 - 560 of 616 in category All (newest first):

 

Bronze Age technique works just fine in the nanotechnology era

With its historic development tracing back to the Bronze Age, welding serves modern industry in broad areas such as construction, manufacturing, and engineering. Spot welding,a type of resistance welding used to weld various sheet metals, was originally developed in the early 1900s. The process uses two shaped copper alloy electrodes to concentrate welding current and force between the materials to be welded. The result is a small "spot" that is quickly heated to the melting point, forming a nugget of welded metal after the current is removed. Perhaps the most common application of spot welding is in the automobile industry, where it is used almost universally to weld the sheet metal forming a car. Spot welders can also be completely automated, and many of the industrial robots found on assembly lines are spot welders. With the continuing development of bottom-up nanotechnology fabrication processes, with self-assembly at its core, spot welding may likewise play an important role in interconnecting carbon nanotubes (CNTs), nanowires, nanobelts, nanohelixes, and other nanomaterials and structures for the assembly of nanoelectronics and nanoelectromechanical systems (NEMS).

Jan 2nd, 2007

Quite unexpectedly, gold, silver and copper can produce single-walled carbon nanotubes

The controlled synthesis of single-walled carbon nanotubes (SWCNTs), which generally requires a nanoscale catalyst metal, is crucial for their application to nanotechnology. In the chemical vapor deposition (CVD) of SWCNTs, the known effective catalyst species are the iron-family elements iron, cobalt, and nickel, with which a high SWCNT yield can be obtained. However, gold, silver, and copper have never been reported to produce SWCNTs. It is well known that iron, cobalt, and nickel have the catalytic function of graphite formation but that gold does not. The difference between the iron-family metals and gold is that the binding energy of carbon is much larger for the iron-family metals. Carbon atoms cannot stay on gold long enough to form a graphitic network. Thus, it is rather natural for iron, cobalt, and nickel to generate SWCNTs, but it is totally unexpected that gold would produce them too. The same picture is applicable to silver and copper. Nevertheless, researchers in Japan succeeded in developing a nanoparticle activation method that shows that even gold, silver, and copper act as efficient catalysts for SWCNT synthesis. These non-magnetic catalysts could provide new routes for controlling the growth of SWCNTs.

Dec 6th, 2006

Focused ion beam milling of nanocavities could lead to photon-on-demand light sources

Artificial opals are gemstones that are of considerable scientific and technological interest as photonic crystals, as components of light sources, solar cells, and chemical sensors. They are conveniently made from periodic stackings of nanospheres. It would be exciting if one could fabricate optical cavities in these photonic crystals by removing, or adding high dielectric material to a single unit cell in the structure. These optical cavities would localize light that potentially enables the fabrication of high-resolution miniature on-chip sensors, or even qubits for quantum computers. Previously, such controlled modification of the nanostructure of a single colloid in an opal has not been achieved. Now, researchers in The Netherlands developed a method for realizing both single and arrays of material cavities, or defects, in individual colloids on the surface of silicon dioxide artificial opals by a focused ion beam milling technique. This research could ultimately lead to the fabrication of a photon-on-demand light source.

Nov 30th, 2006

Green nanotechnology: Synthesizing nanoparticles with sunlight

While the first reported fullerenes and nanotube structures were composed of carbon, it was soon recognized that a plethora of comparable inorganic candidates should also exist. A rich assortment of IF (inorganic fullerene-like structures, or IF for short) nanostructures have been synthesized, and are finding practical uses in tribology, photonics, batteries, and catalysis. On such inorganic molecule that can achieve fullerene-like nanostructures, cesium oxide, is particularly useful for a multitude of applications in photoemissive systems. Unfortunately, it is extremely reactive in the ambient atmosphere, so its production and handling require high vacuum and very pure inert conditions; which translates into problematic and expensive manufacturing and handling, which in turn limits its technological scope and device lifetime. In their quest for a relatively uncomplicated high-yield synthesis method for chemically stable cesium oxide IFs, scientists succeeded in exploiting highly concentrated solar radiation (ultrabright incoherent light) toward that end. This resulted in a simple, inexpensive, and reproducible photothermal procedure for synthesizing IF nanoparticles.

Nov 29th, 2006

Antibacterial wallpaper through nanotechnology

Zinc oxide (ZnO) is considered a workhorse of technological development exhibiting excellent electrical, optical, and chemical properties with a broad range of applications as semiconductors, in optical devices, piezoelectric devices, surface acoustic wave devices, sensors, transparent electrodes, solar cells, antibacterial activity etc. Thin films or nanoscale coating of ZnO nanoparticles on suitable substrates are viewed with great interest for their potential applications as substrates for functional coating, printing, UV inks, e-print, optical communication (security-papers), protection, barriers, portable energy, sensors, photocatalytic wallpaper with antibacterial activity etc. Various methods like chemical, thermal, spin coating, spray pyrolysis, pulsed laser deposition have been used for thin film formation but they are limited to solid supports such as metal, metal oxides, glass or other thermally stable substrates. Coating of ZnO nanoparticles on thermolabile surfaces is scarce and coating on paper was yet to be reported. Paper as a substrate is an economic alternative for technological applications having desired portability and flexibility. Researchers from the National Tsing Hua University in Taiwan found a way of coating paper with ZnO nanoparticles using ultrasound.

Nov 16th, 2006

Lithography-free formation of nanopores in low-cost plastic materials

Synthetic nanopores are promising biosensors, possibly as a robust and versatile replacement for their biological counterparts in characterizing DNA, RNA, and polypeptides. In the past few years since their first introduction, synthetic nanopores have been found in a wide range of biological and nonbiological applications, including characterization of double-stranded DNA length and folding, detection of immune complexes, profiling of optical traps, and basic studies of nanoscale ion transport mechanisms. Given the broad technological importance of synthetic nanopores, it is highly desirable to develop a reliable technique for fabricating these devices using low-cost materials. Researchers at Brown University now report a systematic study of nanopore formation in a plastics system. They also developed a lithography-free technique for fabricating nanopores with biomolecular sensing capabilities.

Nov 15th, 2006

Photocatalytic growth process for metallic nanocages could double as biomolecular nanotagging

Back in March Nanowerk Spotlight reported on work by Sandia researchers who developed a range of novel platinum nanostructures with potential applications in fuel and solar cells (see: Novel platinum nanostructures). Through the use of liposomal templating and a photocatalytic seeding strategy the Sandia team produced a variety of novel dendritic platinum nanostructures such as flat dendritic nanosheets and various foam nanostructures (nanospheres and monoliths). In an intriguing follow-up report on the growth of hollow platinum nanocages, they now show for the first time a one-to-one correspondence between the porphyrin photocatalyst molecules and the seed particles that go on to grow the dendrites. This indicates that the whole process might be used for nanotagging biological molecules and other structures that have been labeled with a photocatalytic porphyrin.

Nov 14th, 2006

Reducing the size of multi-layer nanoshells enables new sensing applications

Nanoshells are a novel class of optically tunable nanoparticles that consist of alternating dielectric and metal layers. They have been shown to have tunable absorption frequencies that are dependent on the ratio of their inner and outer radii. Therefore nanoshells can potentially be used as contrast agents for multi-label molecular imaging, provided that the shell thicknesses are tuned to specific ratios. When used as contrast agents, nanoshells of small dimensions offer advantages in terms of delivery to target sites in living tissues, bioconjugation, steric hindrance, and binding kinetics. Besides their improved tissue penetration, smaller nanoshells generate a strong surface plasmon resonance and may exhibit absorption peaks in the visible?near-infrared spectrum. Sub-100 nm nanoshells also provide large surface areas to volume ratios for chemical functionalization that can be used to link multiple diagnostic (e.g. radioisotopic or magnetic) and therapeutic (e.g. anticancer) agents. Researchers at Northwestern University have come up with a relatively easy way to synthesize sub-100 nm nanoparticles that give rise to tunable peaks.

Nov 10th, 2006