Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 31 in category All (newest first):


How to turn every piece of clothing into an e-textile

e-textileResearchers have fabricated textiles that can protect you from rain, stains, and bacteria, while they harvest the biomechanical energy of the user to power textile-based electronics. These omniphobic triboelectric nanogenerators can be incorporated into any fiber-based textile and be used to power wearable devices using energy harvested from human motion. The team also designed their nanogenerators with large-scale fabrication runs in mind, using embroidery as a technique compatible with conventional textile manufacturing techniques.

Jul 31st, 2019

Laser-induced graphene composites are eminently wearable

flexible-electronicsTo realize the commercial potential of graphene, for instance for wearable electronics, it is necessary to develop reliable, cost-effective and facile processes for the industry-scale fabrication of graphene-based devices. A novel solution involves the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component. This also is the first example of using laser-induced graphene in the form for a powder preparation of graphene-based inks and subsequently for use in screen-printing of stretchable micro-supercapacitors.

Jun 14th, 2019

Weaving carbon nanotube wires into high-performance, wearable supercapacitors

textile-batteryResearchers have developed a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device based on carbon nanotube coated cotton yarn. All device components are flexible. According to the team, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.

May 15th, 2019

Triboelectric nanogenerators for next-generation wearable health monitoring

nanogeneratorDozens of nanotechnology research groups worldwide are working on the development of triboelectric nanogenerators (TENGs) for harvesting energy from mechanical vibrations. The huge interest in TENGs stems from their ability to convert ambient mechanical energy into electricity for powering wearable electronics, energy generation using sound, sensor networks, removing air pollution with nanogenerator-enhanced air filters, implantable medical devices, and other small systems. A recent article comprehensively reviews the recent advances in TENG-based health monitoring.

Apr 12th, 2019

How nanotechnology enables wearable electronics

sensorsSmart watches, fitness trackers, smart garments, smart medical attachments, data gloves - the market for wearable electronics is quickly evolving beyond health care, fitness and wellness into infotainment, and commercial and industrial applications. A review investigates the contribution of nanomaterials in the field of wearables with a focus on actuators and sensors. It discusses current applications of nanomaterials in this field and touch upon the different materials and methods being used.

Mar 22nd, 2019

Graphene and silk combine to make self-healable, multifunctional electronic tattoos

e-tattooElectronic tattoos (e-tattoos) are an extremely thin form of wearable electronics. They are lightweight and soft, which allows them to be intimately mounted on human skin for noninvasive, high-fidelity sensing. During the operation of e-tattoos, they are constantly exposed to external mechanical inputs such as bending, twisting, pressing, and cutting, which may cause mechanical damage and lead to malfunction. Now, researchers have demonstrated a self-healing silk e-tattoo that shows high sensitivity to multiple stimuli, including strain, humidity, and temperature based on a unique graphene, silk fibroin, Ca2+ combination.

Mar 8th, 2019

Green and flexible protein-based electronics

e-gloveIonic conductors are a class of materials with key roles in energy storage, solar energy conversion, sensors, and electronic devices. In their quest towards eco-friendly alternatives for the current type of ionic conductors, researchers have developed an alternative green option based on organic silk and inorganic green laponite for the display and wearables industry via flexible and eco-friendly ionics. This could ultimately enable a wide range of applications within the field of flexible and wearable electronics.

Mar 5th, 2019

Power up your T-shirt with print designs

electronic_t-shirtInspired by the designs printed on T-shirts, researchers recently reported a new class of wearable power sources. To explore the feasibility of power sources directly printed on cotton T-shirts, which look like letters or symbols, they chose electric double layer supercapacitors based on activated carbon materials as a model electrochemical system. These T-shirts look and behave like a normal T-shirt but feature printed supercapacitors in the shape of letters and symbols.

Jan 19th, 2018