Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

Showing Spotlights 49 - 56 of 126 in category Risks, Toxicology, Biocompatibility (newest first):

 

A risk manager's approach to nanotechnology

risk_managementA scarcity of empirical data - especially regarding losses - hampers nanotechnology-related risk dialogue. Nanotechnology is a growing niche, so there is little litigation or loss history to analyze. Thus, much of the discussion of nanotechnology and its management flows from hypothetical examples. Less murky is the fact that nanotechnology is not a passing fad. It has innovative applications for a range of technologies and sectors, including drug delivery, medical imaging, integrated sensors, and semiconductors. The biggest areas of nanotechnology risk management concerns lies in workers' compensation and product liability. This article looks at industry responses and risk management strategies.

Posted: Dec 15th, 2009

Sharper and faster nanodarts kill more bacteria

A newly published antibacterial activity mechanism study demonstrates how a single walled carbon nanotube (SWCNT) kills bacteria by the physical puncture of bacterial membranes. The nanotubes would constantly attack the bacteria in solution, degrading the bacterial cell integrity and causing the cell death. This work elucidates several factors controlling the antibacterial activity of pristine SWCNTs and provides an insight in their toxicity mechanism. With regard to carbon nanotubes, in early toxicological studies, researchers obtained confounding results - in some studies nanotubes were toxic; in others, they were not. The apparent contradictions were actually a result of the materials that the researchers were using.

Posted: Nov 10th, 2009

What happens to those nanotechnology socks during washing?

The potential use of antimicrobial surface coatings ranges from medicine, where medical device infection is associated with significant healthcare costs, to the construction industry and the food packaging industry. Thin films which contain silver have been seen as promising candidate coatings. There now are even anti-odor, anti-bacterial socks that are treated with silver nanoparticles. Researchers in Switzerland have now examined what happens to these silver nanoparticle-treated textiles during washing. The scientists studied release of nanoparticles in laundry water from nine different textiles, including different brands of commercially available anti-odor socks. Studies like these will help address the question what the chances are of nanoparticles from nanofinished textiles being released into the environment.

Posted: Nov 4th, 2009

Nanoparticles' random walk has implications for nanotoxicology

nanotoxicologyThe interest in exploring the use of noble metal nanoparticles for diagnostic and therapeutic imaging stems from the drawbacks of current in vivo probes. Fluorescent probes, such as fluorescent dyes and proteins, are not photostable and therefore are useful only for a limited time during the probing event. Besides imaging agents, especially gold nanoparticles are also intensely researched as target-specific vehicles for drug delivery. Due to its inert chemical properties, gold has been widely considered as one of the most stable and biocompatible materials. But studies of the biocompatibility and toxicity of gold nanoparticles in various types of cells have yielded inconclusive results: some studies show a toxic effect and high-dependence of toxicity on nanoparticle size and surface functional groups, while other studies report no significant cytotoxicity. Many of these studies did not use purified gold nanoparticles, or examine any other chemicals present in the gold nanoparticle solutions, or well characterize the physical properties, leading to these inconclusive results. Researchers have now synthesized and characterized stable, nearly monodisperse, and highly purified gold nanoparticles, and utilized them to study cleavage-stage embryos in real-time and to probe their effects on embryonic development at the single-nanoparticle level in real time.

Posted: Sep 11th, 2009

Cellular toxicity of titanium dioxide nanotubes and nanowires

nano_tio2One of the complications of nanotoxicology is that the toxicity of a specific nanomaterial cannot be predicted from the toxicity of the same material in a different form. For instance, while the toxicity of inert systems such as iron oxides, gold, or silver has been investigated for nearly isotropic particles, the toxicity of these materials in nanofilament form cannot be predicted from their known toxicity as nanoparticles. Fully understanding the toxic mechanisms of nanoscale materials is an essential prerequisite in being able to design harmless nanomaterials whose interactions with biological cells is non-lethal. Currently, a lot of nanotoxicological research effort is focused on carbon nanotubes, but nanofilaments are not exclusively based on carbon materials and can be produced from many inorganic materials in the form of nanotubes and nanowires. Applying the 'precautionary principle' to nanotechnology would require much more extensive nanotoxicological research on all types of nanomaterials; and there seems to be a particular lack of findings concerning non-carbon nanofilaments. Researchers in Switzerland have now taken a closer look at the fate of titanium dioxide (TiO2) based nanofilaments in the body. Their results are cause for concern.

Posted: Jul 27th, 2009

Nanotechnology: the things we don't know

cellA group of researchers at the Technical University of Denmark have conducted a systematic analysis of 31 recently published reports and articles which discuss the environmental, health, and safety aspects of nanomaterials. They find that serious knowledge gaps pervade nearly all areas of basic nanotechnology EHS knowledge. These knowledge gaps or areas of uncertainty were ranked to how often they were included in the screened literature. The analysis found that the following areas in particular have been highly cited as important knowledge gaps within the field: the lack of reference materials and standardization; environmental fate and behavior; human and environmental toxicity; test methods to assess, particularly, the effects, and commercial or industrial-related aspects (e.g. life cycle assessments).

Posted: Jul 3rd, 2009

How to make nanosilver non-cytotoxic with sugar

silver_nanoparticlesYou can find them in all kinds of products, from socks to food containers to coatings for medical devices - we are talking about silver nanoparticles. Valued for its infection-fighting, antimicrobial properties, silver in its modern incarnation as silver nanoparticles, has become the promising antimicrobial material in a variety of applications because the nanoparticles can damage bacterial cells by destroying the enzymes that transport cell nutrient and weakening the cell membrane or cell wall and cytoplasm. Despite their wide use, the issue of possible adverse effects and toxicity of nanoparticles for the human body is progressively, albeit slowly, recognized as central by an increasing number of studies. A widely accepted consensus on the detailed molecular mechanism of silver nanoparticles toxicity is still missing and very often the drive toward new formulations overwhelms the interest for a better assessment of the cytotoxicity of the nanoparticles. Scientists at the University of Trieste in Italy have now developed a novel non-cytotoxic nanocomposite hydrogel material based on natural polysaccharides and silver nanoparticles for antimicrobial applications.

Posted: Jun 29th, 2009

Approaches to safe nanotechnology

nanosafetyFrom a risk and safety point of view it is impossible to draw any definite conclusions as far as today's nanomaterials are concerned. Although gaining steam, nanotoxicological research is still scarce; standards are just emerging; and scientific findings can be contradicting each other because the underlying assumptions and methodologies vary. One initiative that tried to shed light on this issue is a recently completed global review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology. The resulting EMERGNANO report is a unique attempt to identify and assess worldwide progress in relation to nanotechnology risk issues. The review doesn't provide any new data or conclusions but is offeres a fairly comprehensiv identification, stocktaking and analysis of of research carried out worldwide on nanotechnology safety, including that relating to hazard, exposure, risk assessment and regulation.

Posted: Jun 16th, 2009