Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 49 - 56 of 1674 in category (newest first):

 

A chronic in-vitro model for assessing the long-term bioeffects of nanomaterials

nanoparticles_in_cellsNumerous nanotoxicological studies reporting effects of nanomaterials typically address a single exposure at high dosages that are irrelevant to realistic human exposure. Recognizing that acute in vitro work had extremely low correlation to in vivo nanomaterial studies, coupled with the recognition that the unique characteristics that distinguish nanomaterials vary as a function of time, researchers sought to identify a model that would allow for the evaluation of nanomaterial behavior over a 3-month period, but be carried out in an in vitro model.

Posted: Jun 4th, 2014

Personalized protein coronas result in different therapeutic or toxic impacts of identical nanoparticles

protein_coronaThe formation of protein corona is a continuous state of flux in which many proteins compete to bind to the nanoparticle surface, each with their own characteristics such as concentration, structure and solubility determining their final affinity to the nanoparticle surface. This is the reason why biological responses to nanoparticles are strongly dependent to the type and amount of associated proteins in the composition of the protein corona. The protein corona determines the biological fate of nanoparticles and physiological responses. New research findings now show that the plasma protein alterations associated with different diseases, medical conditions, or even lifestyle, can affect the protein composition and content of the hard corona composition.

Posted: Jun 3rd, 2014

Spraying light - the fabrication of light-emitting 3D objects

forkThe light-emitting electrochemical cell (LEC) shares several external attributes with the OLED, notably the opportunity for soft areal emission from thin-film devices, but its unique electrochemical operation eliminates the principal requirement on inert-atmosphere/vacuum processing as it can comprise solely air-stabile materials. This important intrinsic advantage has inspired recent work on an ambient-air fabrication of LEC devices using scalable means. Introducing a new, purpose-designed spray-sintering deposition technique, researchers have now shown that it is possible to spray out liquid inks onto essentially any surface for the achievement of light emission.

Posted: Jun 2nd, 2014

A Wigner based TCAD tool for the design of single dopant devices

Monte_Carlo_simulationAs we are approaching the post-CMOS area, device architectures that are drastically different from today's semiconductor chips are being proposed by researchers. New design concepts are now focused on devices that have not to work despite the presence of quantum effects, but because of them. Solotronics is a relatively new field of optoelectronics that aims to exploit quantum effects at the ultimate limits of miniaturization. This technology seeks to provide a possibility to create in a controllable manner - and to manipulate - single dopants in solids in order to develop optoelectronic devices with only one dopant. To do that, it addresses single dopants placed in a semiconductor material with atomic precision.

Posted: May 29th, 2014

Graphene from fingerprints

fingerprintOver the past few years, researchers have developed numerous methods for synthesizing graphene. The synthesis of high-quality graphene is usually prepared by a complex and costly process - epitaxial growth on transition metal surfaces via chemical vapor deposition using high-purity hydrocarbons as precursors. In new work, researchers demonstrate graphene synthesis by liquid precursor deposition, a process that may give access to a wider range of substrate materials for graphene growth.

Posted: May 28th, 2014

Carbon nanotube ponytails for water purification

nanotechnlogy_water_purificationOne of the problems with activated carbon is the disposal of adsorbed contaminants along with the adsorbent. Another concern is that its pores are often blocked during adsorption. By contrast, carbon nanotubes' (CNTs) open structure offers easy, undisrupted access to reactive sites located on nanotubes' outer surface. That's why researchers see CNTs as an attractive potential substitute for activated carbon. Researchers now have demonstrated that individual CNTs can be integrated into micrometer-sized colloidal particles without using a heavy or bulky particulate support.

Posted: May 27th, 2014

Improved molten air battery operates at lower temperatures

battery_displayA new class of high-density, rechargeable batteries has the potential to address the 'range anxiety' that is inherent to current electric vehicles by drastically increasing their battery capacity: molten air batteries have up to 50 times the storage capacity of lithium-ion batteries. These batteries reversibly use oxygen from the air to store energy via a molten salt and multiple electrons stored per molecule at the counter electrode.

Posted: May 26th, 2014

High-throughput electrocatalytic nano-bioreactors on graphene-like atomic thick surface

nanobioreactorNanobioreactors are emerging as advanced bio-devices, which fuse the advantages of nanomaterials with those of nanobiotechnology. Due to their ultimately small size, high surface area and simulation capacity, they are set to become to be a versatile tool to fabricate ultra-sensitive and selective novel nanobio-devices, which offer us new platform to tackle key energy, medical and environmental issues. Now, a novel two-dimensional bioreactor offers a simple and effective way to overcome many limitations that have been faced by previous designs.

Posted: May 21st, 2014