Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 33 - 40 of 283 in category Carbon Nanotubes (newest first):

 

Realization of dense carbon nanotube-concentrated ceramics with unprecedented properties

nanocompositeIn recent years, there has been growing interest, and progress, in the design and fabrication of carbon nanotube (CNT) macrostructures for effective utilization of their remarkable properties at the macroscale. Realization of such highly concentrated CNT macrostructures in a stiff/elastic environment able to impose compression on individual CNTs and CNT/CNT junctions, could dramatically improve their network connectivity, transport property, and durability, and perhaps lead to novel organic/inorganic hybrids with unprecedented multifunctional properties. In a new study, researchers have effectively addressed this challenge and proposed a new concept - a highly concentrated, 3D macrostructure of individual multiwalled CNTs in a ceramic environment - that dramatically improves not only the transport property and network connectivity of the MWCNT 3D macrostructure but also the strain tolerance of the ceramic material.

Posted: Jul 17th, 2012

Ultrastrong, foldable, and highly conductive carbon nanotube film

cnt_filmCarbon nanotubes (CNTs) show extraordinary multifunctionality, including excellent mechanical, electrical and thermal properties. To be used in practical applications, the CNTs need to be assembled into macroscale structures such as films, fibers and composites. Unfortunately, so far the properties of these macro-structures have been very poor, usually one to three orders of magnitude lower than that of individual CNTs. Low CNT structural perfection, alignment and intertube interaction are key issues that are responsible for such disappointing properties. Researchers have now demonstrated a simple, efficient and scalable strategy to make CNT films ultra-strong and conductive, in which the CNTs are well aligned and densely packed by exploiting drawable CNT arrays as precursors.

Posted: Jun 8th, 2012

Carbon nanotubes enhance performance of heat transfer nanofluids

carbon_nanotubesNanofluids - engineered colloidal suspensions of nanoparticles in a base fluid - are attracting a great deal of interest with their enormous potential to provide enhanced performance properties. Particularly with respect to heat transfer, and compared with more conventional heat transfer fluids (i.e. coolants) currently available, nanofluidic coolants exhibit enhanced thermal conductivity. Attempts to increase the thermal conductivity of heat transfer fluids using nanoparticles has been an active research area over the past decade. However, these attempts have not resulted in a significant improvement in conductivity due to the low thermal conductivity of nanoparticles and high thermal boundary resistance around the 0-dimensional nanoparticles. Researchers have therefore decided to produce a nanofluid using single-walled carbon nanotubes because of their much higher thermal conductivity and their ability to form connected networks with the neighboring carbon nanotubes, thereby increasing the heat transfer path.

Posted: May 11th, 2012

High-performing supercapacitor electrodes made from self-organizing cobalt oxide nanowires

nanowiresCommercially available supercapacitors store energy in two closely spaced layers with opposing charges and offer fast charge/discharge rates and the ability to sustain millions of cycles. Researchers have come up with various electrode materials to improve the performance of supercapacitors, focussing mostly on porous carbon due to its high surface areas, tunable structures, good conductivities, and low cost. Researchers at KAUST now have developed novel supercapacitor electrodes with remarkable pseudocapacitance. They used a scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector.

Posted: Apr 30th, 2012

UV light illuminates the tremendous sensing potential of single-walled carbon nanotubes

cnt_sensorSingle-walled carbon nanotubes arguably are the ultimate biosensor among nanoscale semiconducting materials due to their high surface-to-volume ratio and unique electronic structure. After more than a decade of excitement though, more and more researchers in the nanotube field believe that pristine SWCNTs are very limited as a sensing material. Ironically the ultrahigh sensitivity of SWCNTs is easily compromised by various unintentional contaminants from the device fabrication process as well as the ambient environment. As a result, significant efforts have been focused on all kinds of ways to functionalize or decorate nanotubes with other species in order to improve their sensitivity. Researchers have now shown that applying continuous in situ ultraviolet light illumination during gas detection can enhance a SWCNT-sensor's performance by orders of magnitude under otherwise identical sensing conditions.

Posted: Apr 10th, 2012

Calcium silicate as a metal-free catalyst for carbon nanotube synthesis

carbon_nanotubesOf all the methods that have been developed to produce carbon nanotubes (CNTs), including arc discharge, laser ablation, and chemical vapor deposition (CVD), CVD is the most technically important and the most widely used in industry. Using the CVD process, manufacturers can combine a metal catalyst such as iron or nickel with reaction gases such as hydrocarbon to form carbon nanotubes inside a high-temperature furnace. Semiconductor nanoparticles such as silicon carbide, germanium and silicon have also been used for single CNT catalysis. However, these catalyst materials are usually expensive and need to be of high purity in order to be useful for the growth of carbon nanotubes. Researchers have now found that cheap and plentiful calcium silicate can absorb carbon species and grow multi-walled carbon nanotubes.

Posted: Apr 2nd, 2012

Ultrasensitive chemical nanocoax sensor based on carbon nanotubes

nanocoax_sensorVarious types of nanostructures are used in the development of nanosensors: nanoparticles, nanotubes, nanorods, two-dimensional materials like graphene, embedded nanostructures, porous silicon, and self-assembled materials. For instance, gas sensors often operate by detecting the subtle changes that deposited gas molecules make in the way electricity moves through a surface layer. Researchers have fabricated gas sensors based on carbon nanotube-based field effect transistors, which can detect electrical potential changes around them. While these and related sensing schemes can be all-electronic - i.e., not requiring optical readout - they all require sophisticated nanolithographic techniques to isolate, identify, and integrate electrical contact to the active nanosensor. Researchers have now presented a nanoscale 3D architecture that can afford highly sensitive, room temperature, rapid response, and all-electronic chemical detection.

Posted: Mar 21st, 2012

Nanotechnology Braille display could make Web accessible to the blind

Braille If you are a blind computer user you have to rely on electronic Braille displays which typically allow you to see only one line at a time, no matter what you were doing. Such a Braille display is a tactile, electro-mechanical device for displaying Braille characters, consisting of a row of special 'soft' cells. A soft cell has 6 or 8 pins made of metal or nylon; pins are controlled electronically to move up and down to display characters as they appear on the computer display. A number of cells are placed next to each other to form a soft or refreshable braille line. As the little pins of each cell pop up and down they form a line of braille text that can be read by touch. Researchers have now have fabricated a Braille sheet display by integrating organic thin-film transistor drivers, organic static random-access memory, and carbon nanotube-based actuators.

Posted: Mar 16th, 2012