Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 1646 in category (newest first):

 

Graphene quantum dot band-aids disinfect wounds

antibacterial_applicationA growing body of medical nanotechnology research deals with the development of antibacterial applications, ranging from nanotechnology-based approaches for diagnosing superbugs to antimicrobial surface coatings and wound treatment with antibacterial nanomaterials. Especially silver nanomaterials have been used effectively against different bacteria, fungi and viruses but also carbon nanomaterials like nanotubes and graphene. In new work, researchers have now designed an antibacterial system combining graphene quantum dots with a low dose of a common medical reagent, hydrogen peroxide H2O2.

Posted: Jun 12th, 2014

From squid protein to bioelectronic applications

squid_skinProton-conducting materials have become important for a wide range of technologies, such as fuel cells, batteries, and biosensors. A great deal of research has been devoted to developing improved and application-specific proton conducting materials. Researchers even developed a proton-based transistor that could let machines communicate with living things. Scientists now have discovered and characterized novel electrical properties for the cephalopod structural protein reflectin.

Posted: Jun 11th, 2014

Novel nanocarbon architecture makes a superior bifunctional electrocatalyst

NanocarbonRenewable and high-capacity energy systems like fuel cells and metal-air batteries are key components in any scenario on future energy systems free of fossil fuels. The performance of fuel cells largely depends on the oxygen reduction reaction - the process that breaks the bonds of the oxygen molecules - which is substantially affected by the activity of the cathode catalyst. Researchers have now demonstrated the synthesis of a novel N-doped graphene/single-walled carbon nanotube hybrid material by a facile and cost-favorable one-step CVD method.

Posted: Jun 9th, 2014

An integrated solar-powered energy conversion-storage-utilization system

photoanodeAlmost all strategies for solar energy harvest and solar energy storage that exist today are developed as independent technologies. For instance, a solar cell generates electricity from the absorption and conversion of sunlight, while the storage of the produced electricity has to be implemented with another set of energy utilization solutions such as batteries/supercapacitors and fuel cells. With quite an ingenious solution, researchers have now demonstrated a hybrid, multifunctional material system that allows for simultaneous solar power generation (respectively hydrogen production), electrical energy storage, and chemical sensing.

Posted: Jun 6th, 2014

A chronic in-vitro model for assessing the long-term bioeffects of nanomaterials

nanoparticles_in_cellsNumerous nanotoxicological studies reporting effects of nanomaterials typically address a single exposure at high dosages that are irrelevant to realistic human exposure. Recognizing that acute in vitro work had extremely low correlation to in vivo nanomaterial studies, coupled with the recognition that the unique characteristics that distinguish nanomaterials vary as a function of time, researchers sought to identify a model that would allow for the evaluation of nanomaterial behavior over a 3-month period, but be carried out in an in vitro model.

Posted: Jun 4th, 2014

Personalized protein coronas result in different therapeutic or toxic impacts of identical nanoparticles

protein_coronaThe formation of protein corona is a continuous state of flux in which many proteins compete to bind to the nanoparticle surface, each with their own characteristics such as concentration, structure and solubility determining their final affinity to the nanoparticle surface. This is the reason why biological responses to nanoparticles are strongly dependent to the type and amount of associated proteins in the composition of the protein corona. The protein corona determines the biological fate of nanoparticles and physiological responses. New research findings now show that the plasma protein alterations associated with different diseases, medical conditions, or even lifestyle, can affect the protein composition and content of the hard corona composition.

Posted: Jun 3rd, 2014

Spraying light - the fabrication of light-emitting 3D objects

forkThe light-emitting electrochemical cell (LEC) shares several external attributes with the OLED, notably the opportunity for soft areal emission from thin-film devices, but its unique electrochemical operation eliminates the principal requirement on inert-atmosphere/vacuum processing as it can comprise solely air-stabile materials. This important intrinsic advantage has inspired recent work on an ambient-air fabrication of LEC devices using scalable means. Introducing a new, purpose-designed spray-sintering deposition technique, researchers have now shown that it is possible to spray out liquid inks onto essentially any surface for the achievement of light emission.

Posted: Jun 2nd, 2014

A Wigner based TCAD tool for the design of single dopant devices

Monte_Carlo_simulationAs we are approaching the post-CMOS area, device architectures that are drastically different from today's semiconductor chips are being proposed by researchers. New design concepts are now focused on devices that have not to work despite the presence of quantum effects, but because of them. Solotronics is a relatively new field of optoelectronics that aims to exploit quantum effects at the ultimate limits of miniaturization. This technology seeks to provide a possibility to create in a controllable manner - and to manipulate - single dopants in solids in order to develop optoelectronic devices with only one dopant. To do that, it addresses single dopants placed in a semiconductor material with atomic precision.

Posted: May 29th, 2014