Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1497 - 1504 of 1683 in category All (newest first):

 

Rare-earth nanocapsules as a new type of nanomaterial for cryogenic magnetic refrigerators

The interest in research on magnetic nanocapsules has increased considerably since it was found that their intermediate states between bulk and atomic materials may present different magnetic behaviors from their correspondent bulk counterparts. This difference offers an opportunity for researchers to develop many important technical applications such as magnetic refrigerators, magnetic recording, or magnetic fluids. As the principal contributor of the novel properties, various magnetic cores of nanocapsules, including rare earths and their carbides, have been researched extensively over the past two decades. In addition, cores of magnetic rare-earth intermetallic compounds are becoming a major research focus. However, there have been considerable difficulties in preventing oxidation of the particles of rare-earth elements and compounds. Researchers in PR China have now succeeded in synthesizing a new type of intermetallic nanocapsule that can be applied in cyrogenic magnetic refrigerator devices.

Posted: Nov 6th, 2006

Nanotechnology research in Canada

R+D activities in nanotechnology in Canada are spearheaded by the federal government, provincial governments, as well as universities and national institutes. At the federal level, 9 institutes of the National Research Council (NRC), are conducting R+D in nanotechnology, while the major concentration of both research and industry can be found in Alberta, British Columbia, Ontario and Quebec. Most of these provinces have already established or will establish province-wide consortiums to promote economic development through nanotechnology. Currently, there are between 50 to 200 companies engaged in nanotechnology-related businesses, with numbers varied depending upon the definition of 'nanotechnology'.

Posted: Nov 3rd, 2006

A novel approach to control the microstructure of carbon nanotubes

Various methods have been developed for growing well-aligned CNTs based on variant alignment mechanisms such as 'overcrowding growth', 'template hindrance growth' and 'electric field induced growth'. Compared to other methods, electric field induced growth has been considered to be a more effective and controllable method for producing well-aligned single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Interestingly, while the alignment of CNTs became more controllable and repeatable with the assistance of an electric field, it was also shown that for CNTs grown in an electric field, the diameter uniformity and the crystallinity of graphite sheets of CNTs were clearly improved. This led Chinese researchers to develop an electric-field-induced method to not only improve CNT uniformity but also to create a new approach to control the microstructure of CNTs.

Posted: Nov 2nd, 2006

Fluorescent nanobodies could revolutionize biomedical research - thanks to camels

Antibodies are large Y-shaped proteins used by the immune system to identify and neutralize foreign objects like bacteria and viruses. Each antibody recognizes a specific antigen unique to its target. That makes them valuable tools for the analysis of biomolecules in research, diagnostics and therapy. However, antibodies are huge (150 kDa) biomolecules and are not functional within a living cell due to the reductive environment of the cytoplasm. Normally, antibodies are used to detect antigens on fixed an permeabilized cells (in other words: dead cells). But neither does that provide any information about the dynamic changes of the antigen within different stages of the cell cycle, nor about its overall mobility. A research group at the University of Munich has now succeeded in developing much smaller molecules for antigen detection in living cells.

Posted: Nov 1st, 2006

Nanomaterials made from apricots and cashew nuts could replace petrochemicals

The use of renewable resources (biomass) as an alternate source for fuel and the production of valuable chemicals is becoming a topic of great interest and a driving force behind research into biorefinery concepts. In the early parts of the 20th century, most nonfuel industrial products such as medicines, paints, chemicals, dyes, and fibers were made from vegetables, plant and crops. During the 1970s, petroleum based organic chemicals had largely replaced those derived from plant materials, capturing more than 95% of the markets previously held by products from biological sources. By then, petroleum accounted for more than 70% of our fuel. However, recent developments in biobased materials research show prospects that many petrochemical derived products can be replaced with industrial materials processed from renewable resources. Researchers continue to make progress in research and development of new technologies that bring down the cost of processing plant matter into value-added products. Rising environmental concerns are also suggesting the use of agriculture and forestry resources as alternative feedstock. Being able to develop soft nanomaterials and fuel from biomass will have a direct impact on industrial applications and economically viable alternatives. Researchers already have used plant-derived resources to make a variety of soft nanomaterials, which are useful for a wide range of applications.

Posted: Oct 31st, 2006

Nanosprings in action

The study of very thin structural foams for cushioning and energy dissipation is, now more than ever, of primary importance in the engineering world, for example for the protection of electronic gadgets (such as MP3 players, cell phones, PDAs, etc.) from microimpacts due to accidental drops, as well as in the security area, for mitigation of explosive loading in macro scales. The advancement in the controlled growth of carbon nanotubes and other nanostructures has allowed researchers to create improved systems designed accurately for specific engineering applications.

Posted: Oct 30th, 2006

Novel method simplifies large-scale nanofabrication process

As scientific interests and engineering applications delve down to the nanometer scale, there is a strong need to fabricate nanostructures with good regularity and controllability of their pattern, size, and shape. Furthermore, the nanostructures are useful in many applications only if they cover a relatively large sample area and the manufacturing cost is reasonable. Researchers at UCLA have now achieved a breakthrough by developing a simple but efficient fabrication method to produce well-regulated silicon nanostructures over a large sample area with excellent control of their pattern, size, and shape. Affordable surfaces with well-controlled nanostructures over a large area open new applications not only in electronics but also in the physical world through their unique properties originating from their nanoscale geometry.

Posted: Oct 27th, 2006

Giant enhancement of the carrier mobility in silicon nanowires

'Carrier mobility' is a major factor in determining the speed of electronic devices. Aggressive scaling of the complementary metal-oxide-semiconductor (CMOS) transistor technology requires a high drive current, which depends on the charge carrier mobility. As the dimensions of nanoelectronic circuits continue to shrink, it is important that the carrier mobility does not deteriorate and, if possible, improves. The search for nanostructures where the carrier mobility values can be preserved or even improved continues owing to the extremely high technological pay-off if successful. Nanowires represent a convenient system to understand the effects of low dimensionality on the carrier drift mobility. One can also look at nanowires as an ultimately scaled transistor channel. New research at the University of California - Riverside demonstrates a method for the significant enhancement of the carrier mobility in silicon nanowires. Such mobility enhancement would allow to make smaller and faster transistors and improve heat removal.

Posted: Oct 26th, 2006