Open menu

Nanotechnology Spotlight

Behind the buzz and beyond the hype:
Our Nanowerk-exclusive feature articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 1682 in category (newest first):

 

Ultra-stretchable silicon for flexible electronics (w/video)

silicon_springResearchers have demonstrated ultra-stretchability in monolithic single-crystal silicon. The design is based on an all silicon-based network of hexagonal islands connected through spiral springs. The resulting single-spiral structures can be stretched to a ratio more than 1000%, while remaining below a 1.2% strain. Moreover, these network structures have demonstrated area expansions as high as 30 folds in arrays. This method could provide ultra-stretchable and adaptable electronic systems for distributed network of high-performance macro-electronics especially useful for wearable electronics and bio-integrated devices.

Posted: Oct 21st, 2014

Carbon-nanotube paper electrodes with very high loading for lithium-sulfur batteries

electrodeResearchers have created a free-standing carbon nanotube paper electrode with high sulfur loading for lithium-sulfur batteries employing a bottom-up strategy to design and fabricate a hierarchical structure. This new fabrication method does not employ aluminum foil or binders, thereby fully utilizing the advantage of a Li-S system with high specific capacity. This proof-of-concept experiment indicates that the rational design of the nanostructured electrode offers the possibility to efficiently use the active materials at practical loading.

Posted: Oct 17th, 2014

Cleansing the ionic impurities in LCDs with nanoparticles

ferromagnetic_nanoparticlesImpurities during the production process of liquid crystal devices result in mobile ions that influence the LCs' field-induced switching phenomena, resulting in a phenomenon called image sticking, or ghosting. Researchers now have developed a method to reduce the presence of excess ions by doping LCDs with ferroelectric nanoparticles. They demonstrate that this reduction of free ions has coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

Posted: Oct 16th, 2014

Graphene laminate drastically changes heat conduction of plastic materials

graphene_laminateGraphene laminate - multilayer stacks of graphene layers piled on top of each other - is a promising material for thermal coating applications. Researchers have investigated thermal conductivity of graphene laminate films deposited on PET substrates. They found that the compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. This shows a possibility of up to 600-times enhancement of the thermal conductivity of plastic materials by coating them with the thin graphene laminate films.

Posted: Oct 14th, 2014

Multifunctional RNA nanoparticles to combat cancer and viral infections

There is a significant need for new therapeutic approaches to combat diseases such as cancer and viral infections. Using RNA as a therapeutic modality brings to bear an entirely new approach, which not only allows for the construction of uniform scaffolds for attachment of functional entities, but also permits the use of all the different types of functionalities that are inherent in natural RNAs. New research demonstrates that multifunctional RNA nanoparticles with a nanoring design allow the use of different types of functionalities inherent in natural RNAs.

Posted: Oct 13th, 2014

CNT@NCNT coaxial nanocables - Toward full exposure of 'active sites'

coaxial_nanocableResearchers have demonstrated a unique coaxial carbon nanocable material with pristine carbon nanotubes as the core and nitrogen-doped wrinkled carbon layer as the shell. The active sites rendered by the surface enriched dopant atoms on the carbon nanocables are accessible and effective to catalyze the oxygen involved electrochemical reactions. These coaxial nanocables afford higher ORR/OER current compared with the routine bulk doped nitrogen-doped carbon nanotubes.

Posted: Oct 10th, 2014

Graphene materials for energy storage applications

grapheneGraphene and graphene-based materials have attracted great attention in energy storage applications for batteries and supercapacitors owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. A recent review article summarizes the progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

Posted: Oct 9th, 2014

Nanotechnology compendium for teachers and educators

nanotechnology_compendiumThe European Commission has published a compendium 'Nanotechnologies: Principles, Applications, Implications and Hands-on Activities' that has been specifically developed to provide the educational communities with relevant, accurate and updated materials to inform, motivate and inspire young people to know more about nanosciences and nanotechnologies concepts and applications. This resource has been developed within the context of the European research project Nanoyou, and it has been enriched with numerous and multifaceted inputs, reflections and insights on societal issues, also provided by the European project TimeforNano.

Posted: Oct 6th, 2014